
gmic-py
Release 2.9.4-alpha1

Jonathan-David Schröder, David Tschumperlé

Jan 14, 2021

CONTENTS

1 Installing 3
1.1 For Linux / Unix . 3
1.2 For Mac OS . 3
1.3 For Windows (future) . 3

2 Quickstart 5
2.1 1. Install gmic-py . 5
2.2 2. Run a simple G’MIC effect and view it . 5
2.3 3. Save your result to a file . 7
2.4 4. Dealing with GmicImage and GmicImage lists . 7
2.5 5. Working with the Numpy support . 10

3 Tutorials 15
3.1 Tutorial 1 - G’MIC commands syntax . 15

3.1.1 Little theory on G’MIC commands . 15
3.1.2 The help <some command> command . 17
3.1.3 The sample or sp command . 18
3.1.4 The display command . 19
3.1.5 The print command . 20
3.1.6 The output <file> command . 21
3.1.7 The input <somefile> command (simple and short form) 23
3.1.8 Applying a one or more filter(s) . 23

3.2 Tutorial 2 - Optimization, GmicImage, lists, stylize . 30
3.2.1 The G’MIC module - for debugging’s sake mostly . 30
3.2.2 Gmic - The G’MIC interpreter class . 31
3.2.3 GmicImage - The G’MIC Image class . 32
3.2.4 The G’MIC images list (and image names) . 34
3.2.5 Image names . 36
3.2.6 Wrapping up - stylized fruits example . 38

3.3 Tutorial 3 - filtering a GIF into a flipbook . 40
3.3.1 Goal: Making a moon phases flip book . 40
3.3.2 Loading a GIF into a list of GmicImages . 40
3.3.3 Filtering individual animation frames . 42
3.3.4 Making a montage of the frames . 43
3.3.5 Saving to PNG and printing . 44
3.3.6 Cutting and assembling paper frames . 48
3.3.7 Time to flip . 48

4 Numpy support 49
4.1 Must-know . 49

i

4.2 How-to . 50

5 PIL support 51
5.1 Must-know . 51
5.2 How-to . 51

6 Scikit-Image support 53
6.1 Must-know . 53
6.2 How-to . 53

7 Jupyter/IPython/GColab support 55
7.1 How-to . 56

7.1.1 Installing . 56
7.1.2 Using . 56

7.2 Implementation details . 58

8 Developing, compiling, testing, releasing 61
8.1 TL;DR building gmic-py on Linux . 61
8.2 gmic-py development to release lifecycle (overview) . 62
8.3 Github Actions Continuous integration workflows . 62
8.4 build_tools.bash - a developer’s Swiss army knife . 62

8.4.1 Centralized version for development and continuous-integration-based releasing 62
8.4.2 Calling build_tools.bash . 63
8.4.3 Rapid sub-commands overview and explanations . 63

8.5 Recommended compilers . 64
8.6 Library requirements . 64
8.7 Optimized vs. debugging . 64
8.8 On the fly compiling with pip . 64
8.9 Compiling from a git clone . 64
8.10 gmic-py development to release lifecycle (detailed) . 65

9 API Reference 67

10 Indices and tables 75

Python Module Index 77

Index 79

ii

gmic-py, Release 2.9.4-alpha1

gmic-py is a Python 3 binding for the G’MIC Image Processing Framework written in C++.

gmic is the package name of gmic-py on pypi.org, so you should pip install gmic (see Installing).

G’MIC provides image-processing commands for 1D to 4D images, as well as many graphical filters. It is thus
targetted at both artists and data-scientists.

This documentation showcases various uses of gmic-py:

• gmic-py alone in pure Python,

• with Numpy,

• with the Python Imaging Library (PIL),

• with scikit-image,

• (soon) with pygame and Tkinter,

• (soon) with p5 processing for Python.

Head over to the Quickstart section for examples.

CONTENTS 1

https://gmic.eu/
https://pypi.org/project/gmic/
https://numpy.org/
https://python-pillow.org/
https://scikit-image.org/
https://www.pygame.org/
https://wiki.python.org/moin/TkInter
https://pypi.org/project/p5/

gmic-py, Release 2.9.4-alpha1

2 CONTENTS

CHAPTER

ONE

INSTALLING

Here is how to install the gmic-py binary Python module on your operating system.

For now only Mac OS (till 2.8.3) and Linux / Unix (2.9.x) are supported.

For sp / sample and update commands to work, the curl or wget executable must be installed.

If you cannot install anything on your machine, you may also install gmic-py from a Jupyter Notepad or Google
Colab, see Jupyter/IPython/GColab support

1.1 For Linux / Unix

If you have pip:

pip install gmic

Or conda:

conda install gmic

1.2 For Mac OS

If you have pip:

pip install gmic

If the OpenMP library is not installed yet, you may want to install it first (for parallelization speedup):

brew install libomp # Or possibly clang-omp if failing

1.3 For Windows (future)

gmic-py’s support for Windows is planned but not ready yet.

3

https://curl.se/
https://www.gnu.org/software/wget/

gmic-py, Release 2.9.4-alpha1

4 Chapter 1. Installing

CHAPTER

TWO

QUICKSTART

Here is how to fiddle with gmic-py in five minutes.

gmic-py is a cross-platform Python binding for the G’MIC C++ library. G’MIC is nowadays mostly used for its
image processing domain-specific language (DSL), or through its plug-ins for graphical software. In our case, only
the language is available, but it is very powerful though!

Using gmic-py always boils down to five steps:

1. install the module

2. import it

3. (instantiate a G’MIC language interpreter)

4. evaluate a G’MIC expression against G’MIC samples or your own images

5. retrieve your output images

2.1 1. Install gmic-py

This works on Linux or Mac OS for now. You need no compiler, just Python >= 3.6.

In your favorite shell, run:

pip install gmic

This will install the G’MIC pre-compiled module for Python:

Collecting gmic
Downloading gmic-2.9.0-cp36-cp36m-manylinux2014_x86_64.whl (8.8 MB)

|| 8.8 MB 6.8 MB/s
Installing collected packages: gmic
Successfully installed gmic-2.9.0

2.2 2. Run a simple G’MIC effect and view it

You are now ready to work, open a Python 3 terminal or edit your own .py file and type in the following:

import gmic
gmic.run("sp earth blur 4")

What that does is:

5

gmic-py, Release 2.9.4-alpha1

1. import the gmic Python module

2. create a default G’MIC language interpreter and give it an expression to evaluate:

• sp earth will load a sample image from G’MIC library, named earth

• blur 4 will apply a blur effect to the image(s) before, here with a force of 4.

The G’MIC language’s commands are all listed in its reference documentation on gmic.eu. Here is for the ‘‘blur‘
command itself. <https://gmic.eu/reference.shtml#blur>‘_ If you are on Linux (sorry, not Mac OS), you will see a
window popping up with the following image:

Fig. 1: sp earth blur 4

If you would like to use your own file instead, just write its path first instead of sp earth:

6 Chapter 2. Quickstart

https://gmic.eu/reference.shtml
https://gmic.eu/reference.shtml#blur

gmic-py, Release 2.9.4-alpha1

gmic.run("/home/me/myimage.jpg blur 4")

2.3 3. Save your result to a file

Whether you are on Linux or MacOS you can also save your image with the output G’MIC command.

import gmic
gmic.run("sp earth blur 4 output myblurredearth.png") # will save in the current
→˓working directory

2.4 4. Dealing with GmicImage and GmicImage lists

Now you may want to use and analyse your result images without having to save them first!

For this, pass in as a second parameter a standard Python list, which will be filled with the result. You can then use this
image list as input or output for other commands. The G’MIC Python binding works on image lists in place similarly
to the C++ version. Those lists of images, named gmic_list in C++, are plain-oldlists the Python world. G’MIC
will not rewrite GmicImage data in place, instead it replaces GmicImage by new ones inside image lists, or appends
new images.

import gmic
image_results = [] # This is my image set that G'MIC can read and write in place. Its
→˓contents can grow and reduce.
gmic.run("sp earth blur 4", image_results) # will save in the current working
→˓directory
print(image_results)
[<gmic.GmicImage object at 0x7f6b8f27e3f0 with _data address at 0x1fdfe00, w=500
→˓h=500 d=1 s=3 shared=0>]
gmic.run("display", image_results) # will show the image a window (for Linux only)
gmic.run("print", image_results) # will print image statistics
[gmic]-1./ Print image [0] = '[unnamed]'.
[0] = '[unnamed]':
size = (500,500,1,3) [2929 Kio of floats].
data = (2.59494e-26,3.91551e-26,5.90707e-26,8.91042e-26,1.34385e-25,2.02649e-25,3.
→˓05511e-25,4.6054e-25,6.94078e-25,1.04589e-24,1.57568e-24,2.3734e-24,(...),5.74726e-
→˓24,3.81723e-24,2.53479e-24,1.68282e-24,1.117e-24,7.41318e-25,4.91866e-25,3.26308e-
→˓25,2.16433e-25,1.43531e-25,9.51711e-26,6.30933e-26).
min = 6.66209e-27, max = 243.369, mean = 88.0979, std = 63.7667, coords_min = (0,
→˓499,0,0), coords_max = (84,345,0,2).

gmic.run("fx_bokeh 3,8,0,30,8,4,0.3,0.2,210,210,80,160,0.7,30,20,20,1,2,170,130,20,
→˓110,0.15,0", image_results)
gmic.run("display", image_results) # will show the image with bokeh effect applied a
→˓window
gmic.run("print", image_results) # will print image statistics
[gmic]-1./ Print image [0] = '[unnamed]'.
[0] = '[unnamed]':
size = (500,500,1,4) [3906 Kio of floats].
data = (32.1635,38.7346,46.0117,53.8523,62.053,70.3621,78.5205,86.3153,93.5843,
→˓100.211,106.123,111.297,(...),255,255,255,255,255,255,255,255,255,255,255,255).
min = 0, max = 255, mean = 150.29, std = 95.1853, coords_min = (84,0,0,0), coords_
→˓max = (0,0,0,3).

2.3. 3. Save your result to a file 7

gmic-py, Release 2.9.4-alpha1

Fig. 2: sp earth blur 4

8 Chapter 2. Quickstart

gmic-py, Release 2.9.4-alpha1

Fig. 3: sp earth blur 4 fx_bokeh 3,8,0,30,8,4,0.3,0.2,210,210,80,160,0.7,30,20,20,1,2,170,130,20,110,0.15,0

2.4. 4. Dealing with GmicImage and GmicImage lists 9

gmic-py, Release 2.9.4-alpha1

2.5 5. Working with the Numpy support

A chapter of this documentation is dedicated to the Numpy support of the G’MIC Python version. Head over to the
Numpy support page for details. For now here is a foretaste of it showcasing one-direction conversion from G’MIC to
Numpy.

You can input and output 1D to 3D matrices between G’MIC and Numpy. Note that gmic-py supports data input/output
with not only Numpy support, but also PIL support and Scikit-Image support.

You must install the numpy module yourself, G’MIC will detect and import it from there, leveraging some of its
functions. Data-scientists should keep in mind that G’MIC works internally with float32 pixel values, arranged
in a non-interleaved way (eg. RRR,GGG,BBB), with matrices whose shape is always 4D and prints as (width,
height, depth, spectrum) where spectrum is the number of channels (ie. per-pixel values).

import numpy
from matplotlib import pyplot as plt
import gmic

images = []
gmic.run("sp apples blur_x 30", images) # Handy way to generate an image into file

Fig. 4: sp apples blur_x 30

Now let us try a display from Numpy using Matplotlib

numpy_im = images[0].to_numpy() # deinterleaves, keeps G'MIC w,h,d,s shape
print(numpy_im).shape # (400, 640, 1, 3)

prepare a Matplotlib display with the dimensions=1 hidden to have a proper 2D image

(continues on next page)

10 Chapter 2. Quickstart

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

by default, Matplotlib does not like float with a range in 0-1, so we normalize
→˓values by dividing by 255
numpy_for_plt = numpy_im.squeeze()/255

time for displaying
plt.imshow(numpy_for_plt)
plt.show() # See rotated apples

Now let us fix those apples orientation and use numpy for greyscale filtering

Pure-numpy greyscaling per https://stackoverflow.com/a/51571053/420684
numpy_for_plt = numpy.dot(numpy_for_plt[... , :3] , [0.299 , 0.587, 0.114])
numpy_for_plt.transpose((1,0,2)) # flipping x and y axes

Time for redisplaying
plt.imshow(numpy_for_plt, plt.get_cmap('gray'))
plt.show()

2.5. 5. Working with the Numpy support 11

gmic-py, Release 2.9.4-alpha1

To sum up, here was different fast way to work from G’MIC, with more work on the G’MIC side

import numpy
from matplotlib import pyplot as plt
import gmic

images = []
The gmic.eu website shows various types of B&W: https://gmic.eu/gallery/
→˓blackandwhite.shtml
gmic.run("sp apples blur_x 30 fx_freaky_bw 90,20,0,0,0,0", images) # horizontal
→˓blur+special black&white
numpy_im = images[0].to_numpy_helper(interleave=True,permute="yxzc", squeeze_
→˓shape=True, astype=numpy.uint8)
plt.imshow(numpy_im, plt.get_cmap('gray'))
plt.show()

12 Chapter 2. Quickstart

gmic-py, Release 2.9.4-alpha1

2.5. 5. Working with the Numpy support 13

gmic-py, Release 2.9.4-alpha1

14 Chapter 2. Quickstart

CHAPTER

THREE

TUTORIALS

This is the good place to start if you know a tiny bit of Python but very little about G’MIC commands.

If you are in a hurry, you may head to the related G’MIC Python script and run it right away after a pip install
gmic.

3.1 Tutorial 1 - G’MIC commands syntax

Here is a little theory about G’MIC commands signature, commands piping and buffer indexes. This sounds compli-
cated but is not at all. This tutorial is for very beginner and easy to follow.

3.1.1 Little theory on G’MIC commands

For this section, you do not need to code or run anything at this point. Just meditate.

G’MIC provides more that 500 commands or filters. Which can get updated from the internet by running the update or
up command. This spares you from updating your gmic binary runtime frequently. Instead, a definitions file of many
G’MIC commands gets refreshed on your machine, downloaded from gmic.eu.

G’MIC stores images internally in the x,y,z,c space (or width, height, depth, channels), allowing you to work with 2D
greyscale images, 2D color images, or voxels (3D points) for many applications.

For executing expressions, the G’MIC language parser allows you to pipe commands from left to right:

<command 1> <command 2> <command 3>

where the result(s) of command 1 is piped as the input of command 2 which outputs in turn to command 3.

In G’MIC each command outputs most of the time a G’MIC Image (or G’MIC Image list if several images are there).

Commands outputting corresponds most of the time to in-place transformation within an input images list. Some
times (or always when prefixed with a + sign, eg. +blur), commands can append a new result image to an input
images list.

G’MIC commands thus take as input: G’MIC image(s) (or “buffers”), coming from their left side, and also G’MIC
image(s) and/or scalar parameters (integers, floats, strings..) on the right side:

<former command's output images> <command 1> <command 1 image and/or scalar
→˓parameters>

Example:

input myimage.png blur 3,1

15

https://github.com/myselfhimself/gmic-py/blob/master/examples/tutorial1-simple-filter-and-io/simple_filter_and_io.py
gmic.eu

gmic-py, Release 2.9.4-alpha1

Fig. 1: sample earth blur 3,1

16 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

The above command will:

1. open myimage.png from the G’MIC executable current directory,

2. load it into an G’MIC Images list, which will have 1 item only,

3. then pipe the list as input to the blur command with parameters 3 (standard deviation) and 1 (Neumann boundary
conditions).

From there you will see nothing unless you use the G’MIC command line executable (it pops a display window
automatically), so output <filename> or display are your friends for writing or showing a result window.

Here is a more complex example with more commands piping, where the G’MIC List of 2 G’MIC Images is passed
modified in place from left to right:

input image1.png image2.png blur 4 sharpen 30 smooth 200 display

You can add a ‘-‘ prefix before your G’MIC commands to make them stand out a little more. It changes absolutely
nothing for the result.

-input image1.png image2.png -blur 4 -sharpen 30 -smooth 200 -display

If you want any command in your chain to use only a subset of the leftside results, use the [] index suffix, it will keep
the images in your list in place though

-input image1.png image2.png blur[1] 3 display[0]

The above command will actually blur image2.png but display image1.png only, which is not blurred.

Note that G’MIC is a full fledged scripting language, with variables and control flow: repeat, if condition etc... You
may also create custom commands or filters.

The gmic.eu website technical’s reference and the G’MIC community Github repository are good friends to learn and
ask about G’MIC.

Now is the time to learn some very basic foundational commands for learning and working with G’MIC.

3.1.2 The help <some command> command

import gmic
gmic.run("help blur")

Outputs
"""

gmic: GREYC's Magic for Image Computing: command-line interface
(https://gmic.eu)
Version 2.9.1

Copyright (c) 2008-2020, David Tschumperlé / GREYC / CNRS.
(https://www.greyc.fr)

blur (+):
std_deviation>=0[%],_boundary_conditions,_kernel |
axes,std_deviation>=0[%],_boundary_conditions,_kernel

Blur selected images by a quasi-gaussian or gaussian filter (recursive
→˓implementation).

(continues on next page)

3.1. Tutorial 1 - G’MIC commands syntax 17

https://gmic.eu/reference/blur.html
https://gmic.eu/reference/list_of_commands.html#control_flow
https://github.com/dtschump/gmic-community/wiki/How-to-create-a-custom-filter-in-the-G%E2%80%99mic-plug-in
https://gmic.eu/reference/
https://discuss.pixls.us/c/software/gmic

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

(eq. to 'b').

'boundary_conditions' can be { 0=dirichlet | 1=neumann }.
'kernel' can be { 0=quasi-gaussian (faster) | 1=gaussian }.
When specified, argument 'axes' is a sequence of { x | y | z | c }.
Specifying one axis multiple times apply also the blur multiple times.
Default values: 'boundary_conditions=1' and 'kernel=0'.

Example: [#1] image.jpg +blur 5,0 +blur[0] 5,1

[#2] image.jpg +blur y,10%

Tutorial: https://gmic.eu/tutorial/_blur.shtml

"""

Just in case you are new to Python, you can use the help() command on any G’MIC object.

import gmic
help(gmic)
Outputs:
"""
Help on module gmic:

NAME
gmic - G'MIC Image Processing library Python binding

DESCRIPTION
Use gmic.run(...), gmic.GmicImage(...), gmic.Gmic(...).
Make sure to visit https://github.com/myselfhimself/gmic-py for examples and

→˓documentation.
"""

help(gmic.run)
Outputs:
"""
Help on built-in function run in module gmic:

run(...)
run(command: str[, images: GmicImage|List[GmicImage], image_names:

→˓str|List[str]]) -> None
"""

3.1.3 The sample or sp command

The sample or sp command allows you to load sample images provided by G’MIC. None are pre-downloaded by
default.

If you see network errors when running examples for this section, you should install the curl or wget executable,
change your firewall settings or just skip using the sample command for now. You may also directly read the section
about input instead below, which allows you to load your own local images.

First pop some help about the command, and notice how many sample image names you can use as a first parameter.

18 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

import gmic
gmic.run("help sample") # or "help sp"

OUTPUTS
"""

gmic: GREYC's Magic for Image Computing: command-line interface
(https://gmic.eu)
Version 2.9.1

Copyright (c) 2008-2020, David Tschumperlé / GREYC / CNRS.
(https://www.greyc.fr)

sample:
_name1={ ? | apples | balloons | barbara | boats | bottles | butterfly | \
cameraman | car | cat | cliff | chick | colorful | david | dog | duck |

→˓eagle | \
elephant | earth | flower | fruits | gmicky | gmicky_mahvin | gmicky_wilber

→˓| \
greece | gummy | house | inside | landscape | leaf | lena | leno | lion | \
mandrill | monalisa | monkey | parrots | pencils | peppers | portrait0 | \
portrait1 | portrait2 | portrait3 | portrait4 | portrait5 | portrait6 | \
portrait7 | portrait8 | portrait9 | roddy | rooster | rose | square | swan |

→˓\
teddy | tiger | tulips | wall | waterfall | zelda },_name2,...,_nameN,_width=

→˓{ \
>=0 | 0 (auto) },_height = { >=0 | 0 (auto) } |
(no arg)

Input a new sample RGB image (opt. with specified size).
(eq. to 'sp').

Argument 'name' can be replaced by an integer which serves as a sample index.

Example: [#1] repeat 6 sample done
"""

Let us run the command once, to download an apples file if not on your computer yet, and loading it into our now
empty images buffer:

import gmic
gmic.run("sample apples") # A display window would pop up in gmic's command line
→˓executable, but not in Python that is intended!

3.1.4 The display command

The display command is twofolds: - it displays textual information about an image, - if the environment (operating
system, terminal, IPython-like shell. . .) allows it, tries to show the image in some G’MIC image window, matplotlib
view etc..

import gmic
gmic.run("sample apples display") # This will pop up a display window showing your
→˓image, without it needing to be saved anyway on your drive
gmic.run("sample duck sample apples display[0]") # Same but will show only index 0
→˓image, ie. the duck

(continues on next page)

3.1. Tutorial 1 - G’MIC commands syntax 19

gmic-py, Release 2.9.4-alpha1

Fig. 2: sample apples

(continued from previous page)

OUTPUTS
"""
[gmic]-1./ Display image [0] = 'apples', from point (320,200,0).
[0] = 'apples':

size = (640,400,1,3) [3000 Kio of floats].
data = (20,22,20,20,20,22,22,22,22,22,22,20,(...),1,1,1,1,1,1,1,1,1,1,1,1).
min = 1, max = 250, mean = 58.5602, std = 59.8916, coords_min = (317,306,0,1),

→˓coords_max = (430,135,0,0).
[gmic]-2./ Display image [0] = 'duck', from point (320,240,0).
[0] = 'duck':

size = (640,480,1,3) [3600 Kio of floats].
data = (89,89,74,89,89,89,74,89,89,89,89,89,(...),177,190,177,215,181,194,206,201,

→˓153,201,161,209).
min = 1, max = 253, mean = 125.444, std = 57.4846, coords_min = (364,72,0,2),

→˓coords_max = (413,123,0,0).
"""

3.1.5 The print command

This command is similar to the display command except that it shows no picture, it just outputs text.

import gmic
gmic.run("sp leno print")

(continues on next page)

20 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 3: sample apples

(continued from previous page)

OUTPUTS
"""
[gmic]-1./ Print image [0] = 'leno'.
[0] = 'leno':

size = (512,512,1,3) [3072 Kio of floats].
data = (224,224,223,224,224,225,224,224,224,224,224,224,(...),69,85,85,79,87,79,85,

→˓90,77,77,79,84).
min = 1, max = 255, mean = 128.318, std = 58.3599, coords_min = (508,71,0,1),

→˓coords_max = (124,189,0,0).
"""

3.1.6 The output <file> command

This command writes your images list’s contents to files, using file extension detection.

import gmic
gmic.run("sample earth output myearth.png") # outputs the result of the earth sample
→˓to a path you want (.png, .jpeg, .tiff, .bmp, .pbm and more are supported)
gmic.run("sample earth elephant output mysamples.jpeg") # outputs the result to
→˓mysamples_NNNN.jpeg
gmic.run("sample earth elephant output[1] myelephant.jpeg") # outputs the second
→˓image (index 1, starting at 0) to a single JPEG file

3.1. Tutorial 1 - G’MIC commands syntax 21

gmic-py, Release 2.9.4-alpha1

Fig. 4: sample duck

22 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

3.1.7 The input <somefile> command (simple and short form)

This command fills your image(s) list with the contents of files. Note that G’MIC may also allows to open video files
directly, especially if OpenCV is linked, although the official gmic-py release does not link to OpenCV.

import gmic

LOADING AND SHOWING A SINGLE IMAGE
gmic.run("input myearth.png display") # opens myearth.png and then trying a display
gmic.run("myearth.png display") # here is the short form, where 'input' can be
→˓omitted. Note that the 'display' command is not obligatory, it is left for you as a
→˓proof that it works.

LOADING AND SAVING MULTIPLE IMAGES
gmic.run("sample earth sample apples output myimages.png display") # saves to
→˓myimages_000000.png myimages_000001.png. The display command is optional.
gmic.run("myimages_000000.png myimages_000001.png display") # loads myimages_000000.
→˓png myimages_000001.png and displays them. Note the 'input' command name was
→˓omitted.

3.1.8 Applying a one or more filter(s)

Filtering images is what G’MIC is good at, and especially what most users do with G’MIC.

Official filters and commands are listed at: https://gmic.eu/reference/, especially in the Filtering section.

The G’MIC QT plug-in for GIMP and other graphic software provide more filters, which usually wrap those official
filters and have internal layer management specificities. If you use the latter (they are usually prefixed in fx_ or
gimp_ or gui_, beware their community authors do not always care about stability or allowing the same parameters’
order or meaning! A Gist file explains this in more technical detail if you are very curious.

To get inspiration for commands to run, you may also head to the G’MIC gallery and click the images to see corre-
sponding commands.

Here are some example commands and filters:

import gmic
gmic.run("sample apples blur 4 display") # blur's documentation with a nice preview
→˓is also at https://gmic.eu/reference/blur.html not just through the "help blur"
→˓command

import gmic
gmic.run("sample apples rodilius 10 display") # more at https://gmic.eu/reference/
→˓rodilius.html

SELECTING IMAGES BY INDEX
import gmic
gmic.run("sample apples sample earth blur[1] 4 display") # Here the blur of strength
→˓4 was applied only to image with second position

import gmic
APPLYING THE FAMOUS 'STYLIZE' STYLE TRANSFER FILTER
gmic.run("sp leno display") # this is the portrait we will want to be stylized
gmic.run("_fx_stylize landscapenearantwerp display") # let us be hackish and use the
→˓internal _fx_stylize function to preview one of Antwerp's painting as a future style

(continues on next page)

3.1. Tutorial 1 - G’MIC commands syntax 23

https://gmic.eu/reference/list_of_commands.html#image_sequences_and_videos
https://gmic.eu/reference/list_of_commands.html#image_sequences_and_videos
https://gmic.eu/reference/
https://gmic.eu/reference/list_of_commands.html#filtering
https://gist.github.com/myselfhimself/1eba99d5317190aa04cf65c06d4ebe35
https://gmic.eu/gallery/

gmic-py, Release 2.9.4-alpha1

Fig. 5: sample apples blur 4

Fig. 6: sample apples rodilius 10

24 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 7: sample apples sample earth blur[1] 4 keep[1]

3.1. Tutorial 1 - G’MIC commands syntax 25

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

gmic.run("sample leno _fx_stylize landscapenearantwerp stylize[0] [1] display")

Fig. 8: sp leno

APPLYING MULTIPLE FILTERS
ONCE
gmic.run("sample duck smooth 40,0,1,1,2 display")
3 TIMES
gmic.run("sample duck repeat 3 smooth 40,0,1,1,2 done display")
SEVERAL FILTERS IN A ROW
gmic.run("sample duck repeat 3 smooth 40,0,1,1,2 done blur xy,5 rodilius , display")

26 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 9: _fx_stylize landscapenearantwerp

../../../../../../../../../tmp/gmic_sphinxe40pa8mv/99096acc-56b0-11eb-a038-0242ac110002.png

Fig. 10: sample leno _fx_stylize landscapenearantwerp stylize[0] [1]

3.1. Tutorial 1 - G’MIC commands syntax 27

gmic-py, Release 2.9.4-alpha1

Fig. 11: sample duck smooth 40,0,1,1,2

28 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 12: sample duck repeat 3 smooth 40,0,1,1,2 done blur xy,5 rodilius ,

3.1. Tutorial 1 - G’MIC commands syntax 29

gmic-py, Release 2.9.4-alpha1

3.2 Tutorial 2 - Optimization, GmicImage, lists, stylize

The Python binding for G’MIC or gmic-py (although you “pip install gmic” and “import gmic”) is quite rudimentary.
gmic-py tries to bring together the advantages of the gmic command line tool (a sort of G’MIC language evaluator)
with the speed and API-similarity of G’MIC’s C++ library.

Below you will discover core knowledge of gmic-py to optimize your scripts’ processing speed a bit. This will
maybe be boring, but investing time there will allow you to spare CPU time and avoid superfluous file reads-writes,
especially if you use gmic-py in some bigger back-end or front-end applications.

Note though, that some of knowledge of how the GmicImage class works is needed, so you might want to read the
related section below beforehand.

In this tutorial, let us see how the 3 building blocks of gmic-py can be used together: the interpreter, single images, and
images lists. In Tutorial 1 - G’MIC commands syntax, you have used the G’MIC interpreter mostly, without noticing
how it was instantiated, and used file input and output to avoid Python-level images management.

3.2.1 The G’MIC module - for debugging’s sake mostly

Let us dive into the Python gmic module elements.

import gmic

print(dir(gmic))

Outputs:
"""
['Gmic', 'GmicException', 'GmicImage', '__build__', '__doc__', '__file__', '__loader__
→˓', '__name__', '__package__', '__spec__', '__version__', 'run']
"""

Most important objects you see in this module-level list are:

• Gmic - the G’MIC language intepreter class

• run - is the gmic.run() call you see in most gmic-py’s examples out there. It is a shortcut to gmic.
Gmic().run or gmic.Gmic(commands) for beginners to kick-off running G’MIC expressions right away

• GmicException - an generic exception thrown by most G’MIC classes (along with standard Python excep-
tions, such as ValueError etc)

• GmicImage - a wrapper around C++’s gmic_image class (a CImg alias)

Now some quick and dirty notes on module variables:

import gmic

print(gmic.__spec__) # path were your compiled G'MIC Python loaded shared library
→˓lives. Mostly useful to people installing gmic-py several times.
Outputs:
ModuleSpec(name='gmic', loader=<_frozen_importlib_external.ExtensionFileLoader
→˓object at 0x7fd7f45ab0b8>, origin='/export/home/AAA/.virtualenvs/gmic-sphinx/lib/
→˓python3.6/site-packages/gmic.cpython-36m-x86_64-linux-gnu.so')

print(gmic.__version__) # version of the embedded the libgmic C++ interpreter
Outputs:
2.9.0

(continues on next page)

30 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

print(gmic.__build__) # flags that were used for compilation.
"""This allows to understand fast if your gmic-py provides jpeg, png, tiff support
interesting flags are: openMP is for parallel computing
fftw3 is needed for spectrum-based computing and managing images with dimensions not
→˓in power of 2
OpenCV is by default not linked to gmic-py, although you could rebuild gmic-py easily
→˓and use it
"""
Outputs:
zlib_enabled:1 libpng_enabled:1 display_enabled:1 fftw3_enabled:1 libcurl_enabled:1
→˓openmp_enabled:1 cimg_OS:1 numpy_enabled:1 OS_type:unix

help(gmic) # shows an introduction about gmic-py
G'MIC language help can be read using gmic.run("help <somecommand>")

3.2.2 Gmic - The G’MIC interpreter class

gmic.run is a function which spawns a G’MIC interpreter object for you, evaluates your command, then deletes
the interpreter object. For those literate in computer science, there is no singleton design pattern in use here and no
interpreter gets cached.

Let us see working but unoptimized example of evaluating several commands:

import gmic
gmic.run("sp apples rodilius 3 display")
gmic.run("sp earth blur 5 display")

In pure Python, the above two lines would be the same as doing (being unsure of when garbage collection for memory-
living G’MIC interpreters would happen):

import gmic

g1 = gmic.Gmic()
g1.run("sp apples rodilius 3 display")
del g1
g2 = gmic.Gmic()
g2.run("sp earth blur 5 display")
del g2

gmic.Gmic() instantiates a G’MIC intepreter class. Under the hood, the G’MIC c++ library is made to read its
configuration, set up internal variables, detect operating system capabilities etc..

This is a bit heavy and you may not want to repeat that! For simplicity though, most gmic-py beginner tutorials just
write gmic.run().

Here is the better way to evaluate several commands in a row using a single G’MIC interpreter instance:

import gmic

g = gmic.Gmic() # First create a G'MIC interpreter instance using the Gmic class,
→˓and attach to a variable by a simple assignment
g.run("sp apples rodilius 3") # Reuse your variable as many times as you want, and
→˓call its run() method.
g.run("sp apples blur 5") # Here you are, a 2nd call, where the G'MIC interpreter
→˓was not recreated for nothing!

3.2. Tutorial 2 - Optimization, GmicImage, lists, stylize 31

gmic-py, Release 2.9.4-alpha1

YAY!!! Optimization!!

The G’MIC interpreter does not store images between each evaluation, they are destroyed unless you keep them
attached to a Python variable.

Passing in a pure-Python list of G’MIC images is the way to keep track of your images in memory. This will be shown
a bit further in the next two sections.

Especially, as the run() method actually takes 3 parameters: - a command(s) string, - an optional list of G’MIC images,
- an optional list of G’MIC image names. You can read more about this by running help(gmic.Gmic) or visiting
the API reference.

3.2.3 GmicImage - The G’MIC Image class

After discovering the gmic.Gmic interpreter class, the G’MIC Image is the other building block of gmic-py (and
G’MIC C++).

Here is how to create one from scratch with no data:

import gmic

im = gmic.GmicImage() # without specifying any dimensions
im_ = gmic.GmicImage(width=640, height=480, spectrum=3) # with some dimensions
→˓provided

By the way:
help(gmic.GmicImage) # Some mini-doc on how to call the GmicImage class
Outputs:
"""
Help on class GmicImage in module gmic:

class GmicImage(builtins.object)
| GmicImage([data: bytes = None, width: int = 1, height: int = 1, depth: int = 1,
→˓spectrum: int = 1, shared: bool = False]) -> bool
"""

Now let us take a look at the first image’s properties (attributes):

print(dir(im))
Outputs:
['__call__', '__class__', '__copy__', '__delattr__', '__dir__', '__doc__', '__eq__',
→˓ '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__
→˓init_subclass__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_
→˓ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_
→˓data', '_data_str', '_depth', '_height', '_is_shared', '_spectrum', '_width', 'from_
→˓PIL', 'from_numpy', 'from_numpy_helper', 'from_skimage', 'to_PIL', 'to_numpy', 'to_
→˓numpy_helper', 'to_skimage']

Here the most important attributes you see are:

• _data: a read-only ‘bytes’ buffer, which G’MIC reads and writes as a list of interleaved 32bit float. Interleav-
ing and non-interleaving is a big topic, and G’MIC seems to an exception compared to many other graphics
processing libraries: it stores pixel channel values, channel after channel. For example, for a 3x1 pixels RGB
image, the _data would look like: R1R2R3G1G2G3B1B2B3 instead of R1G1B1R2G2B2R3G3B3.

• _width, _height, _depth, _spectrum: read-only integers. G’MIC works in 3D if needed and stores its
channels (eg. RGB, HSV, or a few million other channels) in the _spectrum dimensions. So an RGB 1024x768
screenshot would have those attributes as: 1024, 768, 1, 3. Any dimension must be >=1.

32 Chapter 3. Tutorials

gmic.html#gmic.Gmic

gmic-py, Release 2.9.4-alpha1

• from_* and to_*: conversion methods to and from other graphics libraries!! (as long as you install them
first in your virtual environment or machine). Indeed, gmic-py was designed so that you spend more time using
other famous tools you already love (numpy and PIL namely..) than working with the less famous gmic-py!
Interoperability FTW!

Here are less important methods:

• _data_str: is not so important, but for your curiosity, it helps to decode the _data attribute as a unicode
string!!! (in same some people wanted to store text in a G’MIC Image. . . the parse_gui command does this
actually)

• _is_shared is never used in Python, is relevant when two interpreters or threads work on the GmicImage.

Let us see how a GmicImage is represented as a string:

print(im)
Outputs:
<gmic.GmicImage object at 0x7f5d6a028a70 with _data address at 0x26d0180, w=1 h=1
→˓d=1 s=1 shared=0>

So we have just created a GmicImage with default parameters, that is an empty _data buffer, and dimensions
width=height=depth=spectrum=1 and no sharing.

If you know numpy, GmicImage object look like numpy’s ndarrays, though the former are much less practical to
manipulate!!! They are actually a very superficial binding of G’MIC’s C++ gmic_image / cimg image class.

To instantiate a GmicImage, you can pass in a bytes buffer, as well as the optional dimensions seen before: width,
height, depth. Numpy does that as well. Here is a complex way to create a GmicImage from fixed bytes-level data and
introspect it:

import gmic
import struct # a handy native Python module to parse and build buffers

Here we set up a GmicImage with 6 floats and dimensions 3x2x1
im2 = gmic.GmicImage(struct.pack("6f", 1, 2, 3, 4, 5, 6), 3, 2, 1)
Let us print that image
print(im2)
Outputs:
<gmic.GmicImage object at 0x7f5d6a028b10 with _data address at 0x26d0f20, w=3 h=2
→˓d=1 s=1 shared=0>

You may print the _data buffer and its length, if you are very curious:
print(im2._data)
Outputs:
b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@\x00\x00\xa0@\x00\x00\xc0@'

print(len(im2._data))
Outputs:
24 # Remember a 3x2x1 G'MIC Image makes up 6 floats (always 32 bits or 4-bytes
→˓long), so 6x4=24 bytes

Just in case you wanted to read your GmicImage's data as floats at once, here is a
→˓pythonic way
Reminder: G'MIC stores pixel values in float32 which is the default float type's
→˓length on most OSes
floats = struct.unpack(

"6f", im2._data
) # "6f" for six floats or str(len(im2._data)/4)+"f"

(continues on next page)

3.2. Tutorial 2 - Optimization, GmicImage, lists, stylize 33

https://gmic.eu/reference/parse_gui.html

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

print(floats)
Outputs:
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

The GmicImage class has no method to print its pixels into console nicely as you would in numpy with
print(mynparray).

For accessing pixels, numpy provides a [] coordinates accessor numpy.ndarray[x,y,z,....] to read matrix
cell values.

The GmicImage class pixel accessor is just \(\) parentheses call on a GmicImage instance. That is to say, each
GmicImage object is callable. The signature for this accessor is mygmicimage(x=0,y=0,z=0,s=0), each
parameter is optional and defaults to 0. Important: for now, the GmicImage pixel accessor is read-only. You are
encouraged to use I/O functions described in Numpy support or PIL support or Scikit-Image support.

Side note: s stands for spectrum, it is interchangeable with c for channel in most G’MIC literature.

Here are two examples of accessing one or all pixel values:

print(im2(y=1)) # reads at x=0,y=1,z=0,s=0
Outputs:
4.0

for z in range(im2._depth):
for y in range(im2._height):

for x in range(im2._width):
for c in range(im2._spectrum):

print((x, y, z, c), "=", im2(x, y, z, c))

"""
Outputs:
(0, 0, 0, 0) = 1.0
(1, 0, 0, 0) = 2.0
(2, 0, 0, 0) = 3.0
(0, 1, 0, 0) = 4.0
(1, 1, 0, 0) = 5.0
(2, 1, 0, 0) = 6.0
"""

You may also want to view your image with your own eyes:

gmic.run(
"display", images=im2

) # Or try gmic.run("print", im2) or gmic.run("output myimage.png", im2) if your
→˓environment has no display
"""
[gmic]-1./ Display image [0] = '[unnamed]', from point (1,1,0).
[0] = '[unnamed]':

size = (3,2,1,1) [24 b of floats].
data = (1,2,3;4,5,6).
min = 1, max = 6, mean = 3.5, std = 1.87083, coords_min = (0,0,0,0), coords_max =

→˓(2,1,0,0).
"""

3.2.4 The G’MIC images list (and image names)

Ooops!!! In the former section, we forgot to talk about G’MIC’s intepreter images list parameter and started using it!!

34 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 13: tuto2_im2.png

3.2. Tutorial 2 - Optimization, GmicImage, lists, stylize 35

gmic-py, Release 2.9.4-alpha1

Just for now, here is a little trick which we have done.

gmic.run(), gmic.Gmic().run() or gmic.Gmic() all have the same signature (commands, images,
image_names). Their second parameter, the images parameter accepts a rewritable list of GmicImage objects
or a single read-only GmicImage:

• If a list is passed, it will be emptied and refilled in place. . .

• If a single GmicImage, which will be read only (no in-place modification)

Let us call the G’MIC interpreter with both single or lists or images:

import gmic
import struct

im2 = gmic.GmicImage(struct.pack("6f", 1, 2, 3, 4, 5, 6), 3, 2, 1)

gmic.run("display", im2) # is a read-only operation, we can pass a single GmicImage

But the proper way to see a change is to put your single image in a list
images_list = [im2]

gmic.run("add 1 display", images_list) # add value 1 to each pixel then display
Note above that the min and max value are properly shifted by 1, compared to our
→˓first 'display' of im2, before in that same tutorial:
"""
Outputs:
gmic.run("add 1 display", images_list) # add value 1 to each pixel then display
[gmic]-1./ Display image [0] = '[unnamed]', from point (1,1,0).
[0] = '[unnamed]':

size = (3,2,1,1) [24 b of floats].
data = (2,3,4;5,6,7).
min = 2, max = 7, mean = 4.5, std = 1.87083, coords_min = (0,0,0,0), coords_max =

→˓(2,1,0,0).
"""

Let us continue our in-place changed image list study:

print(images_list)
Not all commands have the same behaviour in terms or adding, replacing or removing
→˓images in the input images list
Here the 'add' command changes input images in place by default, so our images_list
→˓is still 1-item long
Outputs:
[<gmic.GmicImage object at 0x7fbbe9fd3d30 with _data address at 0x1c16550, w=3 h=2
→˓d=1 s=1 shared=0>]"""

Let us check if our images list's single item has the same content or address as
→˓the original im2 GmicImage... NO! And this is EXPECTED!
print(im2 == images_list[0])
gmic-py does not change your images in place at all!
Just empty and refill your list of GmicImages, so keep references around if you
→˓want to keep them!

3.2.5 Image names

When we run the G’MIC display or print commands, you may notice in your console or with your mouse in the
image display window, that our images so far are all unnamed.

36 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 14: tuto2_im2_add1.png

3.2. Tutorial 2 - Optimization, GmicImage, lists, stylize 37

gmic-py, Release 2.9.4-alpha1

[gmic]-1./ Display image [0] = '[unnamed]', from point (1,1,0).

This is not an issue, though you can give names if you prefer, and refer to those names for indexing:

images_list = []
images_names = ["myapples", "myearth"]
gmic.run("sp apples sp earth print", images_list, images_names) # No names given

TODO continue + fix: https://github.com/myselfhimself/gmic-py/issues/81

3.2.6 Wrapping up - stylized fruits example

Here is an example of a stylized nature montage with some parameters injection.

To prepare this example, the following tricks have been used:

• the command line command gmic help sp (or gmic.run("help sp")), to help decide which samples
would nice to pick.

• The gmic.eu Gallery page for Stylization shows sample names parameter supported by the _fx_stylize (which
is a non-documented G’MIC internal command providing famous painting samples..)

– Actually, since this is a G’MIC internal command, its code can be found here (look for _fx_stylize)

• The List of Commands page from the G’MIC online reference, especially the stylize command page

import gmic

g = gmic.Gmic()

I- Stylization pass
nature_config = [

{"sample": "apples", "style": "convergence"},
{"sample": "fruits", "style": "redwaistcoat"},
{"sample": "flower", "style": "lesdemoisellesdavignon"},

]

result_images = []
for conf in nature_config:

images_list = []
g.run(

"sp {} _fx_stylize {} stylize[0] [1]".format(conf["sample"], conf["style"]),
images_list,

)
print(images_list)
result_images.append(images_list[0])

g.run("display", result_images)

II- Montage pass
Build a 3x3-bordered pixels frame around images, white, and make an automatic
→˓montage, display it and save to file
g.run("frame 3,3,255 montage X display output mymontage.png", result_images)

That was it for tutorial number 2!

The tutorial’s source code files can be found in gmic-py’s Github’s example directory.

38 Chapter 3. Tutorials

https://github.com/myselfhimself/gmic-py/issues/81
https://gmic.eu/gallery/stylization.html
https://raw.githubusercontent.com/dtschump/gmic/master/src/gmic_stdlib.gmic
https://gmic.eu/reference/list_of_commands.html
https://gmic.eu/reference/stylize.html
https://github.com/myselfhimself/gmic-py/tree/master/examples/tutorial2-pythonic-gmic-runs

gmic-py, Release 2.9.4-alpha1

Fig. 15: tuto2_stylization.png

Fig. 16: tuto2_montage.png

3.2. Tutorial 2 - Optimization, GmicImage, lists, stylize 39

gmic-py, Release 2.9.4-alpha1

Now you know more about reusing a G’MIC interpreter handle and calling it several times on a GmicImage list.

Congratulations!

3.3 Tutorial 3 - filtering a GIF into a flipbook

This tutorial will lead you into filtering frames of animated content using gmic-py:

• a moon phases GIF file to make a flip book

• a video file to apply time-controlled filters

If you are in a hurry, this tutorial’s source code is on Github in the examples folder.

3.3.1 Goal: Making a moon phases flip book

The strategy behind transforming a GIF into a flip book is to:

1. split the GIF file into frames

2. modify each frame to our taste to make them fancier (stars, increasing blur)

3. make a big montage grid of the frames

4. save it to PNG and print it on quite thick a A4 paper sheet

5. cut, assemble and snap them with a binder

6. time to flip!

If you lack a printer that accepts thick pages, you may as well laser cut your PNG file.

3.3.2 Loading a GIF into a list of GmicImages

Here is a GIF of moon phases by Thomas Bresson under Creative Commons License 4.0 BY, obtained from Wikime-
dia:

G’MIC does not have internal support for GIF, because the GIF file format has many variants. Instead it relies on
ImageMagick’s convert executable if installed.

Let us try to open and display that GIF renamed moonphases.gif (download it from this link directly) into separate
frames.

import gmic
gmic.run("moonphases.gif display")

Fig. 17: _static/images/tutorial3_moonphases.gif _parse_cli_images append x

Note that we have a green frame which we do not want. Let us remove that first frame systematically.

import gmic
gmic.run("moonphases.gif remove[0] display")

40 Chapter 3. Tutorials

https://en.wikipedia.org/wiki/Flip_book
https://github.com/myselfhimself/gmic-py/tree/master/examples/tutorial3-animated-files
https://en.wikipedia.org/wiki/Flip_book
https://commons.wikimedia.org/wiki/File:2016-09-16_20-30-00_eclipse-lunaire-ann2.gif
https://commons.wikimedia.org/wiki/File:2016-09-16_20-30-00_eclipse-lunaire-ann2.gif
_static/images/moonphases.gif

gmic-py, Release 2.9.4-alpha1

Fig. 18: _static/images/tutorial3_moonphases.gif remove[0] _parse_cli_images append x

If this GIF import leveraging convert does not work on your machine, let us try another way using PIL (or Pillow).
(You might otherwise install convert).

Here we take benefit from gmic-py’s PIL input/output converter which uses numpy under the hood. The magic piece
of code involved is: gmic.GmicImage.from_PIL() - a static method of the GmicImage class, which returns a
GmicImage object from a PIL.Image.Image object .

If the convert-executable technique does work, but you see a green frame as the first frame, skip the PIL step and
continue.

pip install Pillow
pip install numpy # compulsory for gmic-py PIL I/O converter to work

import gmic
import numpy
from PIL import Image, ImageSequence

im = Image.open("moonphases.gif")

images_list = []

for frame in ImageSequence.Iterator(im):
images_list.append(gmic.GmicImage.from_PIL(frame))

gmic.run("display", images_list)

Here is a synthetic adaptive version of both ways:

import gmic
import shutil

g = gmic.Gmic()
images_list = []
GIF_FILENAME = 'moonphases.gif'

If 'convert' is installed
if shutil.which('convert'):

g.run(GIF_FILENAME, images_list)
else:

If convert is absent
PIL and numpy must be installed for this to work
import numpy
from PIL import Image, ImageSequence

im = Image.open(GIF_FILENAME)

for frame in ImageSequence.Iterator(im):
images_list.append(gmic.GmicImage.from_PIL(frame))

g.run("remove[0]", images_list) # discard the first black or green frame
equivalent to this Python expression which works too: images_list = images_list[1:]
g.run("display", images_list)

3.3. Tutorial 3 - filtering a GIF into a flipbook 41

gmic-py, Release 2.9.4-alpha1

Fig. 19: input_glob tuto3_gif_separated_images_0*.png _parse_cli_images append x

Now we have the images_list variable filled with a GIF’s frames except for the first void frame.

If you are curious to playback your GmicImage list, you may use the animate command with g.run("animate",
images_list) (works on a Linux OS with a GUI).

3.3.3 Filtering individual animation frames

TIME FOR SPECIAL EFFECTS!!! (simple)

We will be adding two special effects:

1. blinking stars

2. a growing blur

Adding blinking stars

First let us add random stars on each frame, to make things blink as the Eiffel tower every nighttime hour. G’MIC’s
‘‘stars‘ command <https://gmic.eu/reference/stars.html>‘_ does just that, and its default input arguments (simplified
by a comma ,) are sufficient.

Remember that G’MIC pipes commands from left to right on all the images in the current list.

Since our images list is stored in Python list, we can reuse it in a new command, without having to build a very long
G’MIC expression though.

Append the following line to your script, so stars get generated differently for each frame with default settings:

g.run("stars ,", images_list)

Here are three variants for displaying the stars-filtered images_list. We have been using them since tutorial 1
more or less explicitly:

basic G'MIC 'display' command
g.run("display", images_list) # The basic one.
On Jupyter/Google Colab use 'output somefilename' instead, see known issue: https://
→˓github.com/myselfhimself/gmic-py/issues/63#issuecomment-704396555

'_document_gmic' (or '_parse_cli_images append x' from gmic>=2.9.4), for debugging
beware this replaces your list's contents with single image!
hence the optional backup with copy.copy() (GmicImage objects are copy()-compatible)
import copy
images_list_2 = [copy.copy(im) for im in images_list]
g.run("_parse_cli_images append x display", images_list_2)
print(len(images_list_2)) # prints '1'

'animate' for playing back images (will not work on Jupyter/Google Colab)
g.run("animate", images_list)

Now let us make things unclear with blurring!!

42 Chapter 3. Tutorials

https://gmic.eu/reference/animate.html
https://gmic.eu/reference/stars.html

gmic-py, Release 2.9.4-alpha1

Fig. 20: input_glob tuto3_gif_separated_images_stars_0*.png _parse_cli_images append x display

Adding a blur effect

We will use the G’MIC blur command with a strength = frame index * 2.

For looping over the images and applying a different blur strength for each, we would do a Python for loop. Unfortu-
nately GmicImage objects are immutable in G’MIC and GmicImage lists are emptied and refilled in place (but its
items are not edited in place).

A - Pythonic way

Here is a Pythonic not so short way of applying a growing blur on a list of images in place.

for pos, image in enumerate(images_list):
single_image_list = [image]
g.run("blur {strength}".format(strength=(pos*2)), single_image_list)
images_list[pos] = single_image_list[0]

Fig. 21: input_glob tuto3_gif_blurred_pythonic_separated_images_0*.png _parse_cli_images append x display

Now, do not believe that G’MIC is slow as hell. It uses OpenMP for parallelization for more and more commands in
each new release.

B - G’MIC one-liner way

In case you are satisfied with the former result, you may skip to the next section.

Out of curiosity, here is just a pure-G’MIC syntax alternative for the growing blur, which stands as a one-liner.

g.run("repeat $! blur[$>] {$>*2} done animate", images_list)

Fig. 22: input_glob tuto3_gif_blurred_gmicclike_separated_images_0*.png _parse_cli_images append x display

You have added two special effects to our animation!!! Congratulations!!!

Now is the time to flatten all our frames onto a sheet of paper :)

3.3.4 Making a montage of the frames

An A4 sheet of paper is what we typically print on in any office or house in Europe. Its dimensions are: 21 x 29.7
millimeters.

3.3. Tutorial 3 - filtering a GIF into a flipbook 43

https://gmic.eu/reference/blur.html
https://www.openmp.org/

gmic-py, Release 2.9.4-alpha1

Here is a related montage-making specialists conversation on pixls.us, a community forum.

Let us skip dots-per-inch printing resolution calculation and assume that our final images will be 100 times this ratio
in pixels: 2100 x 2970 px.

For our work, the following commands will be used:

• frame (aka frame_xy) <https://gmic.eu/reference/frame_xy.html> for adding vertical and horizontal margins to
each image,

• append_tiles (instead of the more famous montage command) for combining images into a 2D grid,

• resize_ratio2d to make the result image fit into our pixel dimensions, without stretching.

Here is what each step with the aforementioned G’MIC commands looks like.

Build frames (padding or margins) :

Adding a 40px horizontal margin to each frame, and 3px high
g.run("frame_xy 40,3", images_list) # frame and frame_xy commands are the same

Fig. 23: input_glob tuto3_frame_xy_0*.png _parse_cli_images append x display

Build a grid (or sort of montage) :

Make 4-items wide grid of all images,
4 is the x-count, the second y-count parameter is omitted (hence ',' comma followed
→˓by nothing)
g.run("append_tiles 4,", images_list)

Resize it to fit nicely on an A4 page :

g.run("resize_ratio2d 2100,2970", images_list)

As you notice, paper space is not fully used and our image is 2100x1406 pixels big.

You may skip the next section if you are please with this result.

Actually arranging our images in the vertical direction yields use bigger images and less paper space wasting.

For this we use the G’MIC rotate command and swap the append_tiles columns (y) and rows (x) parameters.

Here is a one-liner that spares a bit more space.

g.run("frame_xy 40,3 append_tiles ,4 rotate 90 resize_ratio2d 2100,2970", images_list)

Congratulations !! Your montage is now ready !!!

3.3.5 Saving to PNG and printing

Using Imagemagick’s convert and G’MIC’s output someFile.pdf command, you may output a PDF file for
our image. However, there seems to be canvas or view size output misconfigurations.

Instead, G’MIC’s native PNG output will print well using any regular desktop’s printing tools.

The output command is just output yourFileName.someFileExtension.

44 Chapter 3. Tutorials

https://discuss.pixls.us/t/gmic-montage-padding/21480
https://gmic.eu/reference/append_tiles.html
https://gmic.eu/reference/montage.html
https://gmic.eu/reference/resize_ratio2d.html
https://gmic.eu/reference/rotate.html

gmic-py, Release 2.9.4-alpha1

Fig. 24: input_glob tuto3_frame_xy_appended.png _parse_cli_images append x display

3.3. Tutorial 3 - filtering a GIF into a flipbook 45

gmic-py, Release 2.9.4-alpha1

Fig. 25: input_glob tuto3_resized_sheet.png _parse_cli_images append x display

46 Chapter 3. Tutorials

gmic-py, Release 2.9.4-alpha1

Fig. 26: input_glob tuto3_resized_sheet2.png _parse_cli_images append x display

3.3. Tutorial 3 - filtering a GIF into a flipbook 47

gmic-py, Release 2.9.4-alpha1

print(len(images_list)) # images_list has just 1 item: the montage'd GIF frames
g.run("output myGifAsA4Paper.png", images_list) # saves into the current directoy

Note that output works also if you have multiple images in your images_list (or left-side resulting images in the G’MIC
expression). In that case, the filename you provide as output parameter will be used as a pattern (eg. myfilename.png
-> myfilename_0000.png).

Three printing tips: - print on the thickest paper as you can, as long as your printer can stand it without being stuffed;
- try to disable any kind of page margin in your printing setup, we do not want to squeeze down our frames; - page
resizing is OK though as long as your image ratio is respected.

_static/images/tutorial3_print_screenshot.png

3.3.6 Cutting and assembling paper frames

Take your best cutter or scissors and cut each frames without mixing up their order :)

We want no white margin to appear.

Stack your paper frames and bind them on the left or right side with a binder (or your fingers hey!!).

3.3.7 Time to flip

This is how my early flip book ended up!! Not that bad!!

To improve it, I could have more frames (spanning on several printed sheets), colors (or laser engraving), thicker paper
(>200g/m2) and a proper binder

In case you missed it, this tutorial’s source code is on Github in the examples folder.

48 Chapter 3. Tutorials

https://github.com/myselfhimself/gmic-py/tree/master/examples/tutorial3-animated-files

CHAPTER

FOUR

NUMPY SUPPORT

Numpy stands for “numeric Python” and is a very famous data processing library for scientists. Since gmic-py 2.9.1,
you can convert a GmicImage from and to a numpy.ndarray for simpler manipulation. The numpy.ndarray type
is used in turn by many graphics processing toolkits.

Numpy input/output support for gmic-py is broken down into 4 methods:

• simplified input/output:

– gmic.GmicImage.from_numpy

– gmic.GmicImage.to_numpy

• full-control, also used for PIL and Scikit-image support:

– gmic.GmicImage.from_numpy_helper

– gmic.GmicImage.to_numpy_helper

All those methods are fully documented in the API Reference. If you want to implement new gmic-py conversion
methods for some library that uses numpy.ndarray‘s a lot, you might just want to import and call the ‘*_numpy_helper
methods with your own very parameters.

4.1 Must-know

• G’MIC works in 1D, 2D, 3D, or 4D. Numpy can work from 0D (scalar) to N dimensions (>4D).

• G’MIC has the following array shapes’ dimension order: (width, height, depth, spectrum).
The spectrum (or channels) dimension represents the number of values per pixel (eg. for RGB images,
spectrum=3). Numpy is shape-agnostic.

• G’MIC works in float32 (ie. 4-bytes float pixel values). Casts from and to numpy.ndarray will
be done for you using numpy.ndarray.astype(). This can be tuned by parameter GmicImage().
to_numpy_helper(astype=...).

• G’MIC can store a few billions of values per pixel (eg. not just R,G,B,A).

• G’MIC is not made for real-time image processing but is quite fast though :).

• G’MIC stores pixel values internally in a non-interleaved format, eg. R,R,R,G,G,G,B,B,B for (3,1,3)
image shape.

• For now the shape is not altered between within input/output methods provided by G’MIC. To alter those, you
can use either the permute= parameter or pre- or post-process you numpy array with a numpy transpose() call
containing several axes.

• numpy is not a requirement for the G’MIC’s Python binding to install, start and work. But is must be installed
if you happen to call the to_/from_/numpy_* methods.

49

https://numpy.org
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html

gmic-py, Release 2.9.4-alpha1

pip install numpy

• Use numpy.expand_dims and numpy.atleast_2d, numpy.atleast_3d, numpy.squeeze to fix your numpy arrays’s
dimensions.

• Advanced note: the compile flag for enabling or disabling numpy support in gmic-py is gmic_py_numpy (see
setup.py).

4.2 How-to

• The usual way to convert a Numpy array to G’MIC is as follows:

pip install numpy
pip install gmic

import gmic
import numpy.random
arr = numpy.random.rand(512,256,3)
gmic_image_from_numpy = gmic.GmicImage.from_numpy(arr)
You might have identically called gmic.GmicImage.from_numpy_helper(arr,
→˓deinterleave=True)
print(gmic_image_from_numpy)
gmic.run("display", gmic_image_from_numpy)

• The usual way to convert a G’MIC Image to Numpy is as follows:

pip install numpy
pip install gmic
pip install matplotlib

import gmic
import numpy
from matplotlib import pyplot as plt
gmic_images = []
gmic.run("sp apples", gmic_images) # store apples image into our list
numpy_image_from_gmic = gmic_images[0].to_numpy()
You might have identically called gmic.GmicImage.to_numpy_helper(arr,
→˓interleave=True)
print(numpy_image_from_gmic)
plt.imshow(numpy_image_from_gmic)
plt.show()

50 Chapter 4. Numpy support

https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
https://numpy.org/doc/stable/reference/generated/numpy.atleast_2d.html
https://numpy.org/doc/stable/reference/generated/numpy.atleast_3d.html
https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html
https://github.com/myselfhimself/gmic-py/blob/master/setup.py

CHAPTER

FIVE

PIL SUPPORT

PIL is the Python Imaging Library and allows to load, save and modify files in many formats. Nowadays Python
programmers install its Pillow fork mostly. Since gmic-py 2.9.1 you can convert a GmicImage from and to a
PIL.Image.Image.

This support is limited and does not intend to cover all types of image buffer formats accepted by PIL. Because of PIL’s
buffer codec limitations highlighted here, an intermediate pass which will be invisible to you will leverage methods
GmicImage.to_numpy_helper and GmicImage.from_numpy_helper.

We have tested only 8-bit RGB 2D files in PIL, more or fewer channels and smaller or bigger pixel values should
work. Feel free to add an issue on our tracker for things you really need related to PIL or gmic-py!

G’MIC Python’s PIL input/output conversion methods are simply:

• gmic.GmicImage.from_PIL

• gmic.GmicImage.to_PIL

Those are fully documented in the API Reference.

You are encouraged to write your own version of to_PIL() and from_PIL() in pure Python by copy-pasting the expres-
sions listed in those API definitions documentation, and tinkering with them.

5.1 Must-know

• G’MIC’s images are 3D (volumetric) non-interleaved with an almost unlimited number of 32-bit float pixel
values. Their shape axes order is x,y,z,c (or width, height, depth, channels).

• PIL works mostly in 2D interleaved, assuming here only 8-bit float pixel values (because of our limited support).
PIL Images shape are assumed to be y,x,c (or height, width, channels), which may equate to a squeezed 3D array
down to 2D.. Shape squeezing and axes flipping is what the to_PIL() will do for you.

• G’MIC PIL Image input and output methods will import numpy on the fly for you, so that module must be
installed too in addition to eg. Pillow.

5.2 How-to

• The usual way to convert a PIL image to G’MIC is as follows:

pip install Pillow
pip install gmic

51

https://pillow.readthedocs.io/en/stable/
https://github.com/python-pillow/Pillow/issues/4954
https://github.com/myselfhimself/gmic-py/issues
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html?highlight=squeeze#numpy.ndarray.squeeze
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html?highlight=squeeze#numpy.ndarray.squeeze

gmic-py, Release 2.9.4-alpha1

import gmic
import PIL.Image
#have some myfile.png somewhere or anything that PIL can open
gmic_image_from_PIL = gmic.GmicImage.from_PIL(PIL.Image.open("myfile.png"))
print(gmic_image_from_PIL)
gmic.run("display", gmic_image_from_PIL)

• The usual way to convert a G’MIC Image to PIL is as follows:

pip install Pillow

import gmic
import PIL.Image
gmic_images = []
gmic.run("sp apples", gmic_images) # store apples image into our list
PIL_image_from_gmic = gmic_images[0].to_PIL() # to_PIL can take 3 config parameters,
→˓see its documentation or run help(gmic.GmicImage.to_PIL)
print(PIL_image_from_gmic)
PIL_image_from_gmic.show()

52 Chapter 5. PIL support

CHAPTER

SIX

SCIKIT-IMAGE SUPPORT

Scikit-image (or skimage) is an image processing framework tied to Scikit. Luckily Its images are of type
numpy.ndarray. Since gmic-py 2.9.1 you can convert a GmicImage from and to a PIL.Image.Image.

The skimage support is limited for now. It relies on fine-tuned calls to the GmicImage.from_numpy_helper and
GmicImage.to_numpy_helper generic methods.

G’MIC Python’s Scikit-image input/output conversion methods are simply:

• gmic.GmicImage.from_skimage

• gmic.GmicImage.to_skimage

Those are fully documented in the API Reference.

You are encouraged to write your own version of to_skimage() and from_skimage() in pure Python by copy-pasting
the expressions listed in those API definitions documentation, and tinkering with them. You can also help improve the
converters upstream with suggestions or patches on the project repository.

6.1 Must-know

• G’MIC’s images are 3D (volumetric) non-interleaved with an almost unlimited number of 32-bit float pixel
values. Their shape axes order is x,y,z,c (or width, height, depth, channels).

• Scikit images are the same, with pixel-type agnosticity and different shape: z,y,x,c (depth or layers, height,
width, channels (or spectrum)).

6.2 How-to

• The usual way to convert a Scikit image to G’MIC is as follows:

pip install scikit-image
pip install gmic

import gmic
import skimage
astronaut = skimage.data.astronaut
gmic_image_from_skimage = gmic.GmicImage.from_skimage(astronaut)
print(gmic_image_from_skimage)
gmic.run("display", gmic_image_from_skimage)

• The usual way to convert a G’MIC Image to PIL is as follows:

53

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
https://github.com/myselfhimself/gmic-py/issues

gmic-py, Release 2.9.4-alpha1

pip install scikit-image
pip install gmic

import gmic
import skimage
from skimage.viewer import ImageViewer
gmic_images = []
gmic.run("sp apples", gmic_images) # store apples image into our list
skimage_from_gmic = gmic_images[0].to_skimage() # to_PIL can take 3 config parameters,
→˓ see its documentation or run help(gmic.GmicImage.to_PIL)
print(skimage_from_gmic)
viewer = ImageViewer(skimage_from_gmic) # you might want to call the image's .
→˓squeeze() method first to have it 2D
viewer.show()

54 Chapter 6. Scikit-Image support

CHAPTER

SEVEN

JUPYTER/IPYTHON/GCOLAB SUPPORT

Since version 2.9.1, gmic-py has been improved so that you can use gmic as a daily tool from any the following
IPython-based shells and possibly more:

• IPython is an open-source framework improving Python shell experience in consoles, web browsers and desktop
user interfaces.

• Jupyter is a sub-project of the IPython-based initiative providing amongst others JupyterLab (aka Jupyter Note-
books), a web-browser application for editing scientifical Python scripts in runnable sub-steps.

• Jupyter QtConsole is an implementation of the JupyterLab as as desktop application using the Qt GUI frame-
work.

• Google Colab is a Google alternative to JupyterLab, also leveraging the IPython technology.

Example screenshots:

Fig. 1: _static/images/jupyter_example.png display

55

https://ipython.org/
https://jupyter.org/
https://qtconsole.readthedocs.io/en/stable/
https://colab.research.google.com/

gmic-py, Release 2.9.4-alpha1

Fig. 2: _static/images/gcolab_example.png display

7.1 How-to

7.1.1 Installing

Unless you are using a local JupyterLab (ie. web interface) or Jupyter QtConsole from your own virtual-environment
where gmic-py can be pre-installed using pip install gmic, here is an example command to install gmic-py:

!pip install gmic # or gmic==2.9.1-alpha6

Collecting gmic==2.9.1-alpha1
Downloading https://files.pythonhosted.org/packages/c9/43/

→˓f8cbc667ff1e8eb556897c256da6b6317c94dc8e6b9b930a0af0b5690d2f/gmic-2.9.1a1-cp36-
→˓cp36m-manylinux2014_x86_64.whl (8.7MB)

|| 8.8MB 2.8MB/s
Collecting wurlitzer

Downloading https://files.pythonhosted.org/packages/0c/1e/
→˓52f4effa64a447c4ec0fb71222799e2ac32c55b4b6c1725fccdf6123146e/wurlitzer-2.0.1-py2.
→˓py3-none-any.whl
Installing collected packages: wurlitzer, gmic
Successfully installed gmic-2.9.1a1 wurlitzer-2.0.1

7.1.2 Using

The following examples have nothing special compared to a regular gmic-py usage and were tested on Google Colab,
a web type of Jupyter/IPython notepad.

56 Chapter 7. Jupyter/IPython/GColab support

gmic-py, Release 2.9.4-alpha1

import gmic
You might optionnally see a message as follows:
gmic-py: wurlitzer found (for G'MIC stdout/stderr redirection) and enabled
→˓automatically through IPython '%load_ext wurlitzer'.
images = []
gmic.run("300,400,1,3 fx_camouflage 9,12,100,30,46,33,75,90,65,179,189,117,255,246,
→˓158 display", images)
A matplotlib or other type of image view should pop inline
Expected text output:
[gmic]-1./ Display image [0], from point (150,200,0) (console output only, no
→˓display available).
[0] = '[unnamed]':
size = (300,400,1,3) [1406 Kio of floats].
data = (95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,(...),75.4,75.
→˓4,75.4,75.4,75.4,75.4,75.4,75.4,75.4,75.4,75.4,75.4).
min = 30, max = 255, mean = 111.497, std = 51.1507, coords_min = (125,0,0,0),
→˓coords_max = (167,18,0,0).

Fig. 3: 300,400,1,3 fx_camouflage 9,12,100,30,46,33,75,90,65,179,189,117,255,246,158

7.1. How-to 57

gmic-py, Release 2.9.4-alpha1

import gmic
images = []
Note that the "sample" command relies exclusively on gmic.eu online images
→˓reachability
So the following might not work if you are using a remote JupyterLab or Google
→˓Colab shell
depending on your platforms' proxy parameters
gmic.run("sp apples print", images)
No image view should pop (the print command only prints textual information?
Outputs:
[gmic]-1./ Print image [0] = 'apples'.
[0] = 'apples':
size = (640,400,1,3) [3000 Kio of floats].
data = (20,22,20,20,20,22,22,22,22,22,22,20,(...),1,1,1,1,1,1,1,1,1,1,1,1).
min = 1, max = 250, mean = 58.5602, std = 59.8916, coords_min = (317,306,0,1),
→˓coords_max = (430,135,0,0).
print(images)
Outputs:
[<gmic.GmicImage object at 0x7f23fc2f6d30 with _data address at 0x7f23fae17010,
→˓w=640 h=400 d=1 s=3 shared=0>]

Fig. 4: sp apples

7.2 Implementation details

The core tricks of gmic-py’s support for IPython-based web-based graphical shells are:

1. for text display (eg. for the display and print commands: G’MIC standard output redirection towards the IPython

58 Chapter 7. Jupyter/IPython/GColab support

https://gmic.eu/tutorial/_display.shtml
https://gmic.eu/reference.shtml#print

gmic-py, Release 2.9.4-alpha1

user output. For this the Python wurlitzer cross-platform module has been used and added as a gmic-py perma-
nent dependency, leveraging its IPython enabling macro, if an IPython shell is detected.

2. for non-popping G’MIC image display window: transparent replacement of G’MIC display command calls into
output calls as PNG format into your (or the host) computer’s temporary directory, followed by IPython or
Matplotlib display calls. For this, a pure C/Python simple adaptor code has been added.

For desktop UI implementations such as Jupyter QtConsole, since your operating systems’ DISPLAY environment
variable is set, above point 1. is still relevant, but the G’MIC native display will probably pop up instead of the PNG
trick.

The Jupyter support in gmic-py can be disabled before module compilation by unsetting the
gmic_py_jupyter_ipython_display compiler variable. See setup.py.

7.2. Implementation details 59

https://github.com/minrk/wurlitzer
https://gmic.eu/tutorial/_display.shtml
https://gmic.eu/reference.shtml#output
https://jupyter.org/qtconsole/stable/
https://github.com/myselfhimself/gmic-py/blob/13c3b72f1de2f759bc830a048f24bf55b11c3d0e/setup.py#L32

gmic-py, Release 2.9.4-alpha1

60 Chapter 7. Jupyter/IPython/GColab support

CHAPTER

EIGHT

DEVELOPING, COMPILING, TESTING, RELEASING

gmic-py is a C/Python binding of C++ which must be compiled or pre-compiled for any target machines in order
to work. Third-party frameworks for writing bindings such as Pybind11 or Pyrex have not been used because of the
binding’s simplicity.

Any Linux / Mac OS / Unix operating system with Python >= 3.6 (possibly less) should be able to compile the binding
without any non-standard Python tooling. 32bit architectures are not supported since Q3 2020, in favor of pure x86_64,
but the project used to compile well against the former.

8.1 TL;DR building gmic-py on Linux

You can build G’MIC by forcing pip install to build it from a source tarball:

pip install gmic --compile

You can build G’MIC from a Git repository clone. For this run the following lines one by one, deciding on your
options:

git clone https://github.com/myselfhimself/gmic-py --depth=1

For Centos / Redhat / Fedora..:
yum install fftw-devel libpng-devel zlib-devel libgomp libtiff-devel libjpeg-devel
→˓wget

For Ubuntu
sudo apt-get install libfftw3-dev libcurl4-openssl-dev libpng-dev liblz-dev libgomp1
→˓libtiff-dev libjpeg-dev wget

Download libgmic's preassembled source archive (equates to 2 git clone commands + 2-
→˓3 make commands..)
bash build_tools.bash 1_clean_and_regrab_gmic_src

For building linux-repaired wheels, using the manylinux docker images, run:
bash build_tools.bash 33_build_manylinux # to focus on one version, add eg. 'cp36' as
→˓a final parameter
ls wheelhouse/ # here you have .whl files

For building just a non-repaired debug .so file the current machine:
bash build_tools.bash 2b_compile_debug
ls build/lib* # cd into any directory with a .so file and run python3 in it, to be
→˓able to 'import gmic'

Same but optmimized non-repaired .so file
(continues on next page)

61

https://pybind11.readthedocs.io/en/stable/
https://wiki.python.org/moin/Pyrex

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

bash build_tools.bash 2_compile
ls build/lib*

8.2 gmic-py development to release lifecycle (overview)

In very short, the G’MIC Python binding per-version lifecycle is as follows: #. grab libgmic’s C++ targetted version
#. tune binding code and pytest cases #. compile and test locally #. git push with a tag to trigger optimized releases
building and sending to G’MIC’s pypi.org project

Go to `gmic-py development to release lifecycle (detailed)‘_ for more details on the right tooling to use for each
step.

Note: Steps 1-3 correspond to the bash build_tools.bash 00_all_steps command.

8.3 Github Actions Continuous integration workflows

Looking that the Github project’s Action’s tab or the .github/workflows files, you will notice the following discting
workflows:

• Linux debug (the fastest to yield a result)

• MacOS optimized

• Manylinux optimized

• Manylinux optimized, on Git tag push optimized with release (to pypi.org)

• MacOS optimized on Git tag push with release (to pypi.org)

All of them leverage build_tools.bash and show the needed package for each OS.

8.4 build_tools.bash - a developer’s Swiss army knife

Located in the Git repository’s root, build_tools.bash is used for developing, building and releasing gmic-py.

Before running build_tools.bash, you should install the developer requirements first:

pip install -r dev-requirements.txt

Then, a running the former script without parameters or with --help shows the targeted G’MIC version and the
available commands.

8.4.1 Centralized version for development and continuous-integration-based re-
leasing

The targeted G’MIC version is the available version of G’MIC (according to its source archives and pre-releases) for
which we are developing a binding and preparing a release. It is stored in the VERSION file (add no trailing character
after the version number there!) for use by build_tools.bash, setup.py the continuous integration scripts.

62 Chapter 8. Developing, compiling, testing, releasing

https://pypi.org/project/gmic/
https://github.com/myselfhimself/gmic-py/actions
https://github.com/myselfhimself/gmic-py/tree/master/.github/workflows
https://github.com/myselfhimself/gmic-py/blob/master/build_tools.bash
https://gmic.eu/files/source/
https://gmic.eu/files/prerelease/

gmic-py, Release 2.9.4-alpha1

8.4.2 Calling build_tools.bash

To call any command just append its name as a first parameter:

$ bash build_tools.bash <the command name>
$ # For example:
$ bash build_tools.bash1_clean_and_regrab_gmic_src # Will grab the libgmic C++ code

8.4.3 Rapid sub-commands overview and explanations

Exhaustive commands documentation will not be covered hereafter. In order to understand them, you should look
at their implementations within the bash script and their use within the .github/worfklows/ Github Action continuous
integration recipes. In it, one function equates to one command.

• 00_all_steps: Use this if you are a beginner with build_tools.bash and have time on
a Linux machine with a Python virtual environment, it will grab G’MIC’s C++ source, com-
pile, test and bundle it without making any release. More experienced developer in the
project will likely run single steps only. This can also be run from a Docker image, al-
though the related Dockerfile now only survives in Git history <https://github.com/myselfhimself/gmic-
py/blob/fc12cb74f4b02fbfd83e9e9fba44ba7a4cee0d93/Dockerfile>_ because it is used very rarely.

• 1_clean_and_regrab_gmic_src: download libgmic’s C++ code into the src/ directory (which is emp-
tied beforehand)

• 11_send_to_pypi: send built wheels (.whl) to pypi.org using twine

• 2_compile: compile with optimization (long). On Linux a .so file is generated in the build/ directory.

• 2b_compile_debug: compile without optimization (fast) and with debug symbols.

• 20_reformat_all: reformat both Python and C code (note this is not done after compile time in
manylinux to avoid crashes). You usually run this by hand before doing a Git commit.

• 21_check_c_style: using clang-format.

• 22_reformat_c_style: using clang-format.

• 23i_install_black_python_formatter: installed a locked version of the black Python formatter and
checker.

• 23_check_python_style: using black.

• 24_reformat_python_style: using black.

• 33_build_manylinux: build gmic-py with optimized compiling using the PEP 571 standard for old
Linux distributions. This technique nicknamed manylinux ships with a Docker image we use on Github Actions.
Rarely run locally because it is super long, but this is safe as it is dockerized. Check for your built wheels in the
wheels/ directory.

• 3_test_compiled_so: runs pytest cases from tests/ onto your build/lib* shared gmic-py library.

• 3b_test_compiled_so_no_numpy: similar by omitting the Numpy-support test suite.

• 31_test_compiled_so_filters_io: very long experimental test suite with G’MIC gmic cli command
vs gmic-py module output images result comparison.

• 4_build_wheel: build a .whl wheel without embedding external shared libraries (ie. doing a “repair” step
as needed on Linuxes, but not on MacOS or Windows). When run, head over to the build/dist* directory.

• 5_test_wheel: runs pytest cases over the last built wheel.

8.4. build_tools.bash - a developer’s Swiss army knife 63

https://github.com/myselfhimself/gmic-py/tree/master/.github/workflows
https://clang.llvm.org/docs/ClangFormat.html
https://black.readthedocs.io/en/stable/
https://github.com/pypa/manylinux

gmic-py, Release 2.9.4-alpha1

8.5 Recommended compilers

For proper OpenMP support - which is highly recommended, our build bots use GCC for Linux (CLang should work)
and CLang version 6 (not newer) on MacOS.

For the upcoming Windows support, MSYS2 - mimicking the UNIX standards - will be the envisioned environment,
instead of MSVC. The former compiler works already best with G’MIC (C++).

8.6 Library requirements

gmic-py embeds libgmic C++ library and has the same library needs as the latter. Namely zlib and libpng, optionally
libfftw3, libjpeg, libtiff, OpenMP. gmic-py’s setup.py file shows the use of the Unix-compatible pkgconfig module,
for available libraries detection and toggling in order to run a smooth compilation with you having to tune compile
flags at all.

Note that our releases are all built against: zlib, libpng, libopenmp, libtiff, libjpeg, similarly to libgmic releases.
Libgmic IS embedded inside the gmic-py binding.

8.7 Optimized vs. debugging

For testing and daily development, gmic-py can be compiled faster with no optimization and with debug symbols
attached. This is down through a hackish --debug flag. This is what is run through

From setup.py:

debug_enabled = "--debug" in sys.argv

For releases, an optimized build is generated, just by omitting the --debug flag.

For debugging segfaults or other situations, you can run gdb python and explore with the gdb command line. You can
also use CLion (or any C++ editor), load the C source and Python script of your own using the gmic module, run your
Python script in Debug mode or with some blocking input() or other pure-python breakpoing for example, and attach
with your C++ IDE to the latest Python process run. Here is a similar very barebone way of debugging with IPython
and lldb (or gdb).

8.8 On the fly compiling with pip

You can compile automatically through a pipwhich will run the setup.py compiling steps for you, it will download
gmic-py’s source from its most stable origin: pypi.org.

pip install --no-binary gmic

8.9 Compiling from a git clone

Compiling locally from a Git clone is usually done with GCC/CLang and gets inspiration from libgmic’s own Makefile.
There are no special tricks, but Python tools are used best instead of direct compiler calling.

setup.py build # will need a pip install pkgconfig first

64 Chapter 8. Developing, compiling, testing, releasing

https://www.openmp.org/
https://gmic.eu/libgmic.shtml
https://github.com/myselfhimself/gmic-py/blob/master/setup.py
https://pypi.org/project/pkgconfig/
https://www.jetbrains.com/help/clion/attaching-to-local-process.html
https://www.jetbrains.com/help/clion/attaching-to-local-process.html
http://johntfoster.github.io/posts/debugging-cc%2B%2B-libraries-called-by-python.html
http://johntfoster.github.io/posts/debugging-cc%2B%2B-libraries-called-by-python.html

gmic-py, Release 2.9.4-alpha1

Which is done by build_tools.bash 2_compile or 2b_compile_debug variant as well.

Though you will libgmic’s source first. See the next section instead for doing first things first.

8.10 gmic-py development to release lifecycle (detailed)

1. once for all, install developer’s requirements in a project own virtual environment:

pip install -r dev-requirements.txt

2. change the targetted G’MIC version number (we follow libgmic’s versioning) in VERSION. build_tools.
bash, setup.py and the Github Actions workflow files will all rely on this central piece of data!

echo "2.9.1" > VERSION

Note: this version can be overriden on a per-command basis for build_tools.bash by setting the
GMIC_VERSION environment variable. Read build_tools.bash code for details.

3. grab the related libgmic C++ source

bash build_tools.bash 1_clean_and_regrab_gmic_src

4. edit gmicpy.cpp gmicpy.h setup.py the pytest tests/

5. edit the documentation in docs/ (it gets deployed to readthedocs.io on each Git push)

6. rebuild documentation for previewing:

pip install sphinx # one time only
cd docs/; make html

7. compile in debug mode

bash build_tools.bash 2b_compile_debug

8. run few or all unit tests locally

bash build_tools.bash 3_test_compiled_so # for all tests
bash build_tools.bash 3b_test_compiled_so_no_numpy # for all tests, except numpy ones
bash build_tools.bash 3b_test_compiled_so_no_numpy openmp # all tests the name of
→˓which matches the *openmp* wildcard

9. hand test interactively (outside any Python virtual environment, or using an environment with gmic uninstalled)

cd build/lib.linux-x86_64-3.6/
ls # shows gmic.cpython-36m-x86_64-linux-gnu.so
python3
import gmic
gmic.run("sp earth") # etc

10. check linked shared libraries

cd build/lib.linux-x86_64-3.6/
ldd gmic.cpython-36m-x86_64-linux-gnu.so

11. Git push without any tag to trigger Github Actions for Mac OS and Linux debug and optimized builds, as well
as readthedocs.io documentation building

8.10. gmic-py development to release lifecycle (detailed) 65

gmic-py, Release 2.9.4-alpha1

git push # (origin master) or any other Github branch

12. set a Git tag and Git push to trigger the former Github Actions + identical ones optimized with pypi.org release
wheels upload

git tag -a v2.9.1 # In this project, the tag must start with v for releasing
git push # origin master or any other Github branch

13. look at pypi.org’s gmic module released contents

14. test online releases by hand (in a Python environment without gmic installed)

pip install gmic # or gmic==2.9.1 in our case
python3
import gmic
gmic.run("sp earth") # etc
py.test tests/

66 Chapter 8. Developing, compiling, testing, releasing

https://pypi.org/project/gmic/

CHAPTER

NINE

API REFERENCE

G’MIC image processing library Python binary module.

Use gmic.run or gmic.Gmic to run G’MIC commands inside the G’MIC C++ interpreter, manipulate gmic.
GmicImage which has numpy/PIL input/output support, assemble lists of gmic.GmicImage items inside read-
writeable pure-Python list objects.

class gmic.Gmic
Bases: object

run(command, images=None, image_names=None)
Run G’MIC interpreter following a G’MIC language command(s) string, on 0 or more namable
GmicImage items.

Note (single-image short-hand calling): if images is a GmicImage, then image_namesmust be either
a str or be omitted.

Example

Here is a long example describing several use cases:

import gmic
import struct
import random
instance1 = gmic.Gmic('echo_stdout \'instantiation and run all in one\')
instance2 = gmic.Gmic()
instance2.run('echo_stdout \'hello world\'') # G'MIC command without images
→˓parameter
a = gmic.GmicImage(struct.pack(*('256f',) + tuple([random.random() for a in
→˓range(256)])), 16, 16) # Build 16x16 greyscale image
instance2.run('blur 12,0,1 resize 50%,50%', a) # Blur then resize the image
a._width == a._height == 8 # The image is half smaller
instance2.run('display', a) # If you have X11 enabled (linux only), show the
→˓image in a window
image_names = ['img_' + str(i) for i in range(10)] # You can also name your
→˓images if you have several (optional)
images = [gmic.GmicImage(struct.pack(*((str(w*h)+'f',) + (i*2.0,)*w*h)), w,
→˓h) for i in range(10)] # Prepare a list of image
instance1.run('add 1 print', images, image_names) # And pipe those into the
→˓interpreter
instance1.run('blur 10,0,1 print', images[0], 'my_pic_name') # Short-hand 1-
→˓image calling style

Parameters

67

gmic-py, Release 2.9.4-alpha1

• command (str) – An image-processing command in the G’MIC language

• images (Optional[Union[List[gmic.GmicImage], gmic.
GmicImage]]) – A list of GmicImage items that G’MIC will edit in place, or a
single gmic.GmicImage which will used for input only. Defaults to None. Put a list
variable here, not a plain []. If you pass a list, it can be empty if you intend to fill or
complement it using your G’MIC command.

• image_names (Optional[List<str>]) – A list of names for the images, defaults
to None. In-place editing by G’MIC can happen, you might want to pass your list as a
variable instead.

Returns Returns None or raises a GmicException.

Return type None

Raises GmicException – This translates’ G’MIC C++ same-named exception. Look at the
exception message for details.

exception gmic.GmicException
Bases: Exception

Only exception class of the Gmic module.

This wraps G’MIC’s C++ gmic_exception. Refer to the exception message itself.

class gmic.GmicImage(data=None, width=1, height=1, depth=1, spectrum=1, shared=False)
Bases: object

Simplified mapping of the C++ gmic_image type. Stores a binary buffer of data, a height, width, depth,
spectrum.

Example

Several ways to use a GmicImage simply:

import gmic
empty_1x1x1_black_image = gmic.GmicImage() # or gmic.GmicImage(None,1,1,1,1) for
→˓example
import struct
i = gmic.GmicImage(struct.pack('2f', 0.0, 1.5), 1, 1) # 2D 1x1 image
gmic.run('add 1', i) # GmicImage injection into G'MIC's interpreter
i # Using GmicImage's repr() string representation
Output: <gmic.GmicImage object at 0x7f09bfb504f8 with _data address at
→˓0x22dd5b0, w=1 h=1 d=1 s=1 shared=0>
i(0,0) == 1.0 # Using GmicImage(x,y,z) pixel reading operator after initialization
gmic.run('resize 200%,200%', i) # Some G'MIC operations may reallocate the image
→˓buffer in place without risk
i._width == i._height == 2 # Use the _width, _height, _depth, _spectrum, _data, _
→˓data_str, _is_shared read-only attributes

Parameters

• data (Optional[bytes]) – Raw data for the image (must be a sequence of 4-bytes
floats blocks, with as many blocks as all the dimensions multiplied together).

• width (Optional[int]) – Image width in pixels. Defaults to 1.

• height (Optional[int]) – Image height in pixels. Defaults to 1.

• depth (Optional[int]) – Image height in pixels. Defaults to 1.

68 Chapter 9. API Reference

gmic-py, Release 2.9.4-alpha1

• spectrum (Optional[int]) – Number of channels per pixel. Defaults to 1.

• shared (Optional[bool]) – C++ option: whether the buffer should be shareable be-
tween several GmicImages and operations. Defaults to False.

Note: GmicImage(x=0, y=0, z=0, s=0)

This instance method allows you to read pixels in a GmicImage for given coordinates.

You can read, but cannot write pixel values by passing some or all coordinates the following way:

import gmic
images = []
gmic.run("sp apples", images)
image = images[0]
print(image(0,2,0,2)) # or image(y=2,z=2)
print(image(0,0,0,0)) # or image()
for x in range(image._width):

for y in range(image._height):
for z in range(image._depth):

for c in range(image._spectrum):
print(image(x,y,z,c))

__copy__()
Copy method for copy.copy() support. Deepcopying and pickle-ing are not supported.

from_PIL(pil_image)
Make a GmicImage from a 2D PIL.Image.Image object. Equates to gmic.GmicImage.
from_numpy_helper(numpy.array(pil_image), deinterleave=True). Will import
PIL.Image and numpy for conversion.

Parameters pil_image (PIL.Image.Image) – An image to convert into GmicImage.

Returns A new gmic.GmicImage based on the input PIL.Image.Image data.

Return type gmic.GmicImage

from_numpy(numpy_array)
Make a GmicImage from a 1-4 dimensions numpy.ndarray. Simplified version of GmicImage.
from_numpy_helper with deinterleave=True.

Parameters numpy_array (numpy.ndarray) – A non-empty 1D-4D Numpy array.

Returns A new GmicImage based the input numpy.ndarray data.

Return type GmicImage

Raises GmicException, TypeError – Look at the exception message for details. Matri-
ces with dimensions <1D or >4D will be rejected.

from_numpy_helper(numpy_array, deinterleave=False, permute=”)
Make a GmicImage from a 1-4 dimensions numpy.ndarray.

G’MIC works with (width, height, depth, spectrum/channels) matrix layout, with 32bit-float pixel val-
ues deinterleaved (ie. RRR,GGG,BBB). If your matrix is less than 4D, G’MIC will tentatively add
append void dimensions to it (eg. for a shape of (3,1) -> (3,1,1,1)). You can avoid this by us-
ing numpy.expand_dims or numpy.atleast_*d functions yourself first. If your pixel values
(ie. numpy.ndarray.dtype) are not in a float32 format, G’MIC will tentatively call numpy.
astype(numpy_array, numpy.float32) to cast its contents first.

69

gmic-py, Release 2.9.4-alpha1

Example

Several ways to use a GmicImage simply:

import gmic
empty_1x1x1_black_image = gmic.GmicImage() # or gmic.GmicImage(None,1,1,1,1)
→˓for example
import struct
i = gmic.GmicImage(struct.pack('2f', 0.0, 1.5), 1, 1) # 2D 1x1 image
gmic.run('add 1', i) # GmicImage injection into G'MIC's interpreter
i # Using GmicImage's repr() string representation
Output: <gmic.GmicImage object at 0x7f09bfb504f8 with _data address at
→˓0x22dd5b0, w=1 h=1 d=1 s=1 shared=0>
i(0,0) == 1.0 # Using GmicImage(x,y,z) pixel reading operator after
→˓initialization
gmic.run('resize 200%,200%', i) # Some G'MIC operations may reallocate the
→˓image buffer in place without risk
i._width == i._height == 2 # Use the _width, _height, _depth, _spectrum, _
→˓data, _data_str, _is_shared read-only attributes

Parameters

• numpy_array (numpy.ndarray) – A non-empty 1D-4D Numpy array.

• deinterleave (Optional[bool]) – If True, pixel channel values will be dein-
terleaved inside the GmicImage data. If False, pixel channels vector values will be
untouched. Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the input matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (no permutation).

Returns A new GmicImage based the input numpy.ndarray data.

Return type GmicImage

Raises GmicException, TypeError – Look at the exception message for details. Matri-
ces with dimensions <1D or >4D will be rejected.

from_skimage()
GmicImage.from_numpy_helper(numpy_array, deinterleave=False, permute=”)

Make a GmicImage from a 1-4 dimensions numpy.ndarray.

G’MIC works with (width, height, depth, spectrum/channels) matrix layout, with 32bit-float pixel val-
ues deinterleaved (ie. RRR,GGG,BBB). If your matrix is less than 4D, G’MIC will tentatively add
append void dimensions to it (eg. for a shape of (3,1) -> (3,1,1,1)). You can avoid this by us-
ing numpy.expand_dims or numpy.atleast_*d functions yourself first. If your pixel values
(ie. numpy.ndarray.dtype) are not in a float32 format, G’MIC will tentatively call numpy.
astype(numpy_array, numpy.float32) to cast its contents first.

Example

Several ways to use a GmicImage simply:

import gmic
empty_1x1x1_black_image = gmic.GmicImage() # or gmic.GmicImage(None,1,1,1,1)
→˓for example

(continues on next page)

70 Chapter 9. API Reference

https://gmic.eu/reference.shtml#permute

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

import struct
i = gmic.GmicImage(struct.pack('2f', 0.0, 1.5), 1, 1) # 2D 1x1 image
gmic.run('add 1', i) # GmicImage injection into G'MIC's interpreter
i # Using GmicImage's repr() string representation
Output: <gmic.GmicImage object at 0x7f09bfb504f8 with _data address at
→˓0x22dd5b0, w=1 h=1 d=1 s=1 shared=0>
i(0,0) == 1.0 # Using GmicImage(x,y,z) pixel reading operator after
→˓initialization
gmic.run('resize 200%,200%', i) # Some G'MIC operations may reallocate the
→˓image buffer in place without risk
i._width == i._height == 2 # Use the _width, _height, _depth, _spectrum, _
→˓data, _data_str, _is_shared read-only attributes

Parameters

• numpy_array (numpy.ndarray) – A non-empty 1D-4D Numpy array.

• deinterleave (Optional[bool]) – If True, pixel channel values will be dein-
terleaved inside the GmicImage data. If False, pixel channels vector values will be
untouched. Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the input matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (no permutation).

Returns A new GmicImage based the input numpy.ndarray data.

Return type GmicImage

Raises GmicException, TypeError – Look at the exception message for details. Matri-
ces with dimensions <1D or >4D will be rejected.

to_PIL(astype=numpy.uint8, squeeze_shape=True, mode=’RGB’)
Make a 2D 8-bit per pixel RGB PIL.Image from any GmicImage. Equates
to PIL.Image.fromarray(self.to_numpy_helper(astype=astype,
squeeze_shape=squeeze_shape, interleave=True, permute='zyxc'), mode).
Will import PIL.Image and numpy.

This method uses numpy for conversion. Thus astype is used in a numpy.ndarray.astype()`
conversion pass and samewise for ``squeeze_shape. :param astype: Will be used for
casting your image’s pixel. :type astype: type :param squeeze_shape: if True, your image shape has
‘1’ components removed, is usually necessary to convert from G’MIC 3D to PIL.Image 2D only. :type
squeeze_shape: bool :param mode: the PIL Image mode to use. see https://pillow.readthedocs.io/en/stable/
handbook/concepts.html#concept-modes :type mode: str

Returns A new PIL.Image based on the instance GmicImage data from which you call this
method.

Return type PIL.Image

to_numpy()
Make a numpy.ndarray from a GmicImage. Simplified version of GmicImage.to_numpy_helper
with interleave=True.

Returns A new numpy.ndarray based the input GmicImage data.

Return type numpy.ndarray

71

https://gmic.eu/reference.shtml#permute
https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes
https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes

gmic-py, Release 2.9.4-alpha1

to_numpy_helper(astype=numpy.float32, interleave=False, permute=”, squeeze_shape=False)
Make a numpy.ndarray from a GmicImage. G’MIC does not squeeze dimensions internally, so unless you
use the squeeze_shape flag calling numpy.squeeze for you, the output matrix will be 4D.

Parameters

• astype (numpy.dtype) – The type to which G’MIC’s float32 pixel values will cast to
for the output matrix.

• interleave (Optional[bool]) – If True, pixel channel values will be interleaved
(ie. RGB, RGB, RGB) within the numpy array. If False, pixel channels vector values
will be untouched/deinterleaved (ie. RRR,GGG,BBB). Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the output matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (ie. no permutation).

Returns A new numpy.ndarray based the input GmicImage data.

Return type numpy.ndarray

to_skimage()
GmicImage.to_numpy_helper(astype=numpy.float32, interleave=False, permute=”,
squeeze_shape=False)

Make a numpy.ndarray from a GmicImage. G’MIC does not squeeze dimensions internally, so unless you
use the squeeze_shape flag calling numpy.squeeze for you, the output matrix will be 4D.

Parameters

• astype (numpy.dtype) – The type to which G’MIC’s float32 pixel values will cast to
for the output matrix.

• interleave (Optional[bool]) – If True, pixel channel values will be interleaved
(ie. RGB, RGB, RGB) within the numpy array. If False, pixel channels vector values
will be untouched/deinterleaved (ie. RRR,GGG,BBB). Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the output matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (ie. no permutation).

Returns A new numpy.ndarray based the input GmicImage data.

Return type numpy.ndarray

gmic.run(command, images=None, image_names=None)
Run the G’MIC interpreter with a G’MIC language command(s) string, on 0 or more nameable GmicImage(s).
This is a short-hand for calling gmic.Gmic().run with the exact same parameters signature.

Note (single-image short-hand calling): if images is a GmicImage, then image_names must be either a
str or be omitted.

Note (interpreter warm-up): calling gmic.run multiple times is inefficient as it spawns then drops a new
G’MIC interpreter instance for every call. For better performance, you can tie a gmic.GmicG’MIC interpreter
instance to a variable instead and call its run method multiple times. Look at gmic.Gmic.run for more
information.

Example

Several ways to use the module-level gmic.run() function:

72 Chapter 9. API Reference

https://gmic.eu/reference.shtml#permute
https://gmic.eu/reference.shtml#permute

gmic-py, Release 2.9.4-alpha1

import gmic
import struct
import random
gmic.run('echo_stdout \'hello world\'') # G'MIC command without images parameter
a = gmic.GmicImage(struct.pack(*('256f',) + tuple([random.random() for a in
→˓range(256)])), 16, 16) # Build 16x16 greyscale image
gmic.run('blur 12,0,1 resize 50%,50%', a) # Blur then resize the image
a._width == a._height == 8 # The image is half smaller
gmic.run('display', a) # If you have X11 enabled (linux only), show the image in
→˓a window
image_names = ['img_' + str(i) for i in range(10)] # You can also name your
→˓images if you have several (optional)
images = [gmic.GmicImage(struct.pack(*((str(w*h)+'f',) + (i*2.0,)*w*h)), w, h)
→˓for i in range(10)] # Prepare a list of image
gmic.run('add 1 print', images, image_names) # And pipe those into the interpreter
gmic.run('blur 10,0,1 print', images[0], 'my_pic_name') # Short-hand 1-image
→˓calling style

Parameters

• command (str) – An image-processing command in the G’MIC language

• images (Optional[Union[List[gmic.GmicImage], gmic.GmicImage]])
– A list of GmicImage items that G’MIC will edit in place, or a single gmic.GmicImage
which will used for input only. Defaults to None. Put a list variable here, not a plain [].
If you pass a list, it can be empty if you intend to fill or complement it using your G’MIC
command.

• image_names (Optional[List<str>]) – A list of names for the images, defaults to
None. In-place editing by G’MIC can happen, you might want to pass your list as a variable
instead.

Returns Returns None or raises a GmicException.

Return type None

Raises GmicException – This translates’ G’MIC C++ same-named exception. Look at the ex-
ception message for details.

73

gmic-py, Release 2.9.4-alpha1

74 Chapter 9. API Reference

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

75

gmic-py, Release 2.9.4-alpha1

76 Chapter 10. Indices and tables

PYTHON MODULE INDEX

g
gmic, 67

77

gmic-py, Release 2.9.4-alpha1

78 Python Module Index

INDEX

Symbols
__copy__() (gmic.GmicImage method), 69

F
from_numpy() (gmic.GmicImage method), 69
from_numpy_helper() (gmic.GmicImage method),

69
from_PIL() (gmic.GmicImage method), 69
from_skimage() (gmic.GmicImage method), 70

G
Gmic (class in gmic), 67
gmic (module), 67
GmicException, 68
GmicImage (class in gmic), 68

R
run() (gmic.Gmic method), 67
run() (in module gmic), 72

T
to_numpy() (gmic.GmicImage method), 71
to_numpy_helper() (gmic.GmicImage method), 71
to_PIL() (gmic.GmicImage method), 71
to_skimage() (gmic.GmicImage method), 72

79

	Installing
	For Linux / Unix
	For Mac OS
	For Windows (future)

	Quickstart
	1. Install gmic-py
	2. Run a simple G’MIC effect and view it
	3. Save your result to a file
	4. Dealing with GmicImage and GmicImage lists
	5. Working with the Numpy support

	Tutorials
	Tutorial 1 - G’MIC commands syntax
	Little theory on G’MIC commands
	The help <some command> command
	The sample or sp command
	The display command
	The print command
	The output <file> command
	The input <somefile> command (simple and short form)
	Applying a one or more filter(s)

	Tutorial 2 - Optimization, GmicImage, lists, stylize
	The G’MIC module - for debugging’s sake mostly
	Gmic - The G’MIC interpreter class
	GmicImage - The G’MIC Image class
	The G’MIC images list (and image names)
	Image names
	Wrapping up - stylized fruits example

	Tutorial 3 - filtering a GIF into a flipbook
	Goal: Making a moon phases flip book
	Loading a GIF into a list of GmicImages
	Filtering individual animation frames
	Making a montage of the frames
	Saving to PNG and printing
	Cutting and assembling paper frames
	Time to flip

	Numpy support
	Must-know
	How-to

	PIL support
	Must-know
	How-to

	Scikit-Image support
	Must-know
	How-to

	Jupyter/IPython/GColab support
	How-to
	Installing
	Using

	Implementation details

	Developing, compiling, testing, releasing
	TL;DR building gmic-py on Linux
	gmic-py development to release lifecycle (overview)
	Github Actions Continuous integration workflows
	build_tools.bash - a developer’s Swiss army knife
	Centralized version for development and continuous-integration-based releasing
	Calling build_tools.bash
	Rapid sub-commands overview and explanations

	Recommended compilers
	Library requirements
	Optimized vs. debugging
	On the fly compiling with pip
	Compiling from a git clone
	gmic-py development to release lifecycle (detailed)

	API Reference
	Indices and tables
	Python Module Index
	Index

