
gmic-py
Release 2.9.4-alpha1

Jonathan-David Schröder, David Tschumperlé

Apr 09, 2021

CONTENTS

1 Installing 3
1.1 For Linux / Unix . 3
1.2 For Mac OS . 3
1.3 For Windows (future) . 3

2 Quickstart 5
2.1 1. Install gmic-py . 5
2.2 2. Run a simple G’MIC effect and view it . 5
2.3 3. Save your result to a file . 7
2.4 4. Dealing with GmicImage and GmicImage lists . 7
2.5 5. Working with the Numpy support . 10

3 Cookbook for G’MIC beginners 15
3.1 Basics . 15
3.2 Images . 15
3.3 Selections and Command Decorations . 15
3.4 Images have Edges - Now What? . 15
3.5 Conjuring Images out of the Aether and Other Generators . 15

4 Numpy support 17
4.1 Must-know . 17
4.2 How-to . 18

5 PIL support 19
5.1 Must-know . 19
5.2 How-to . 19

6 Scikit-Image support 21
6.1 Must-know . 21
6.2 How-to . 21

7 Jupyter/IPython/GColab support 23
7.1 How-to . 24

7.1.1 Installing . 24
7.1.2 Using . 24

7.2 Implementation details . 26

8 Developing, compiling, testing, releasing 29
8.1 TL;DR building gmic-py on Linux . 29
8.2 gmic-py development to release lifecycle (overview) . 30
8.3 Github Actions Continuous integration workflows . 30

i

8.4 build_tools.bash - a developer’s Swiss army knife . 30
8.4.1 Centralized version for development and continuous-integration-based releasing 30
8.4.2 Calling build_tools.bash . 31
8.4.3 Rapid sub-commands overview and explanations . 31

8.5 Recommended compilers . 32
8.6 Library requirements . 32
8.7 Optimized vs. debugging . 32
8.8 On the fly compiling with pip . 32
8.9 Compiling from a git clone . 32
8.10 gmic-py development to release lifecycle (detailed) . 33

9 API Reference 35

10 Indices and tables 43

Python Module Index 45

Index 47

ii

gmic-py, Release 2.9.4-alpha1

gmic-py is a Python 3 binding for the G’MIC Image Processing Framework written in C++.

gmic is the package name of gmic-py on pypi.org, so you should pip install gmic (see Installing).

G’MIC provides image-processing commands for 1D to 4D images, as well as many graphical filters. It is thus
targetted at both artists and data-scientists.

This documentation showcases various uses of gmic-py:

• gmic-py alone in pure Python,

• with Numpy,

• with the Python Imaging Library (PIL),

• with scikit-image,

• (soon) with pygame and Tkinter,

• (soon) with p5 processing for Python.

Head over to the Quickstart section for examples.

CONTENTS 1

https://gmic.eu/
https://pypi.org/project/gmic/
https://numpy.org/
https://python-pillow.org/
https://scikit-image.org/
https://www.pygame.org/
https://wiki.python.org/moin/TkInter
https://pypi.org/project/p5/

gmic-py, Release 2.9.4-alpha1

2 CONTENTS

CHAPTER

ONE

INSTALLING

Here is how to install the gmic-py binary Python module on your operating system.

For now only Mac OS (till 2.8.3) and Linux / Unix (2.9.x) are supported.

For sp / sample and update commands to work, the curl or wget executable must be installed.

If you cannot install anything on your machine, you may also install gmic-py from a Jupyter Notepad or Google
Colab, see Jupyter/IPython/GColab support

1.1 For Linux / Unix

If you have pip:

pip install gmic

Or conda:

conda install gmic

1.2 For Mac OS

If you have pip:

pip install gmic

If the OpenMP library is not installed yet, you may want to install it first (for parallelization speedup):

brew install libomp # Or possibly clang-omp if failing

1.3 For Windows (future)

gmic-py’s support for Windows is planned but not ready yet.

3

https://curl.se/
https://www.gnu.org/software/wget/

gmic-py, Release 2.9.4-alpha1

4 Chapter 1. Installing

CHAPTER

TWO

QUICKSTART

Here is how to fiddle with gmic-py in five minutes.

gmic-py is a cross-platform Python binding for the G’MIC C++ library. G’MIC is nowadays mostly used for its
image processing domain-specific language (DSL), or through its plug-ins for graphical software. In our case, only
the language is available, but it is very powerful though!

Using gmic-py always boils down to five steps:

1. install the module

2. import it

3. (instantiate a G’MIC language interpreter)

4. evaluate a G’MIC expression against G’MIC samples or your own images

5. retrieve your output images

2.1 1. Install gmic-py

This works on Linux or Mac OS for now. You need no compiler, just Python >= 3.6.

In your favorite shell, run:

pip install gmic

This will install the G’MIC pre-compiled module for Python:

Collecting gmic
Downloading gmic-2.9.0-cp36-cp36m-manylinux2014_x86_64.whl (8.8 MB)

|| 8.8 MB 6.8 MB/s
Installing collected packages: gmic
Successfully installed gmic-2.9.0

2.2 2. Run a simple G’MIC effect and view it

You are now ready to work, open a Python 3 terminal or edit your own .py file and type in the following:

import gmic
gmic.run("sp earth blur 4")

What that does is:

5

gmic-py, Release 2.9.4-alpha1

1. import the gmic Python module

2. create a default G’MIC language interpreter and give it an expression to evaluate:

• sp earth will load a sample image from G’MIC library, named earth

• blur 4 will apply a blur effect to the image(s) before, here with a force of 4.

The G’MIC language’s commands are all listed in its reference documentation on gmic.eu. Here is for the ‘‘blur‘
command itself. <https://gmic.eu/reference.shtml#blur>‘_ If you are on Linux (sorry, not Mac OS), you will see a
window popping up with the following image:

Fig. 1: sp earth blur 4

If you would like to use your own file instead, just write its path first instead of sp earth:

6 Chapter 2. Quickstart

https://gmic.eu/reference.shtml
https://gmic.eu/reference.shtml#blur

gmic-py, Release 2.9.4-alpha1

gmic.run("/home/me/myimage.jpg blur 4")

2.3 3. Save your result to a file

Whether you are on Linux or MacOS you can also save your image with the output G’MIC command.

import gmic
gmic.run("sp earth blur 4 output myblurredearth.png") # will save in the current
→˓working directory

2.4 4. Dealing with GmicImage and GmicImage lists

Now you may want to use and analyse your result images without having to save them first!

For this, pass in as a second parameter a standard Python list, which will be filled with the result. You can then use this
image list as input or output for other commands. The G’MIC Python binding works on image lists in place similarly
to the C++ version. Those lists of images, named gmic_list in C++, are plain-oldlists the Python world. G’MIC
will not rewrite GmicImage data in place, instead it replaces GmicImage by new ones inside image lists, or appends
new images.

import gmic
image_results = [] # This is my image set that G'MIC can read and write in place. Its
→˓contents can grow and reduce.
gmic.run("sp earth blur 4", image_results) # will save in the current working
→˓directory
print(image_results)
[<gmic.GmicImage object at 0x7f6b8f27e3f0 with _data address at 0x1fdfe00, w=500
→˓h=500 d=1 s=3 shared=0>]
gmic.run("display", image_results) # will show the image a window (for Linux only)
gmic.run("print", image_results) # will print image statistics
[gmic]-1./ Print image [0] = '[unnamed]'.
[0] = '[unnamed]':
size = (500,500,1,3) [2929 Kio of floats].
data = (2.59494e-26,3.91551e-26,5.90707e-26,8.91042e-26,1.34385e-25,2.02649e-25,3.
→˓05511e-25,4.6054e-25,6.94078e-25,1.04589e-24,1.57568e-24,2.3734e-24,(...),5.74726e-
→˓24,3.81723e-24,2.53479e-24,1.68282e-24,1.117e-24,7.41318e-25,4.91866e-25,3.26308e-
→˓25,2.16433e-25,1.43531e-25,9.51711e-26,6.30933e-26).
min = 6.66209e-27, max = 243.369, mean = 88.0979, std = 63.7667, coords_min = (0,
→˓499,0,0), coords_max = (84,345,0,2).

gmic.run("fx_bokeh 3,8,0,30,8,4,0.3,0.2,210,210,80,160,0.7,30,20,20,1,2,170,130,20,
→˓110,0.15,0", image_results)
gmic.run("display", image_results) # will show the image with bokeh effect applied a
→˓window
gmic.run("print", image_results) # will print image statistics
[gmic]-1./ Print image [0] = '[unnamed]'.
[0] = '[unnamed]':
size = (500,500,1,4) [3906 Kio of floats].
data = (32.1635,38.7346,46.0117,53.8523,62.053,70.3621,78.5205,86.3153,93.5843,
→˓100.211,106.123,111.297,(...),255,255,255,255,255,255,255,255,255,255,255,255).
min = 0, max = 255, mean = 150.29, std = 95.1853, coords_min = (84,0,0,0), coords_
→˓max = (0,0,0,3).

2.3. 3. Save your result to a file 7

gmic-py, Release 2.9.4-alpha1

Fig. 2: sp earth blur 4

8 Chapter 2. Quickstart

gmic-py, Release 2.9.4-alpha1

Fig. 3: sp earth blur 4 fx_bokeh 3,8,0,30,8,4,0.3,0.2,210,210,80,160,0.7,30,20,20,1,2,170,130,20,110,0.15,0

2.4. 4. Dealing with GmicImage and GmicImage lists 9

gmic-py, Release 2.9.4-alpha1

2.5 5. Working with the Numpy support

A chapter of this documentation is dedicated to the Numpy support of the G’MIC Python version. Head over to the
Numpy support page for details. For now here is a foretaste of it showcasing one-direction conversion from G’MIC to
Numpy.

You can input and output 1D to 3D matrices between G’MIC and Numpy. Note that gmic-py supports data input/output
with not only Numpy support, but also PIL support and Scikit-Image support.

You must install the numpy module yourself, G’MIC will detect and import it from there, leveraging some of its
functions. Data-scientists should keep in mind that G’MIC works internally with float32 pixel values, arranged
in a non-interleaved way (eg. RRR,GGG,BBB), with matrices whose shape is always 4D and prints as (width,
height, depth, spectrum) where spectrum is the number of channels (ie. per-pixel values).

import numpy
from matplotlib import pyplot as plt
import gmic

images = []
gmic.run("sp apples blur_x 30", images) # Handy way to generate an image into file

Fig. 4: sp apples blur_x 30

Now let us try a display from Numpy using Matplotlib

numpy_im = images[0].to_numpy() # deinterleaves, keeps G'MIC w,h,d,s shape
print(numpy_im).shape # (400, 640, 1, 3)

prepare a Matplotlib display with the dimensions=1 hidden to have a proper 2D image

(continues on next page)

10 Chapter 2. Quickstart

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

by default, Matplotlib does not like float with a range in 0-1, so we normalize
→˓values by dividing by 255
numpy_for_plt = numpy_im.squeeze()/255

time for displaying
plt.imshow(numpy_for_plt)
plt.show() # See rotated apples

Now let us fix those apples orientation and use numpy for greyscale filtering

Pure-numpy greyscaling per https://stackoverflow.com/a/51571053/420684
numpy_for_plt = numpy.dot(numpy_for_plt[... , :3] , [0.299 , 0.587, 0.114])
numpy_for_plt.transpose((1,0,2)) # flipping x and y axes

Time for redisplaying
plt.imshow(numpy_for_plt, plt.get_cmap('gray'))
plt.show()

2.5. 5. Working with the Numpy support 11

gmic-py, Release 2.9.4-alpha1

To sum up, here was different fast way to work from G’MIC, with more work on the G’MIC side

import numpy
from matplotlib import pyplot as plt
import gmic

images = []
The gmic.eu website shows various types of B&W: https://gmic.eu/gallery/
→˓blackandwhite.shtml
gmic.run("sp apples blur_x 30 fx_freaky_bw 90,20,0,0,0,0", images) # horizontal
→˓blur+special black&white
numpy_im = images[0].to_numpy_helper(interleave=True,permute="yxzc", squeeze_
→˓shape=True, astype=numpy.uint8)
plt.imshow(numpy_im, plt.get_cmap('gray'))
plt.show()

12 Chapter 2. Quickstart

gmic-py, Release 2.9.4-alpha1

2.5. 5. Working with the Numpy support 13

gmic-py, Release 2.9.4-alpha1

14 Chapter 2. Quickstart

CHAPTER

THREE

COOKBOOK FOR G’MIC BEGINNERS

This cookbook is intended for newcomers to the G’MIC language. It takes you by the hand step by step, starting
from your Python (optionnally Numpy, Scipy..) language skills and making you learn the G’MIC image processing
language the easy way a smooth methodology. gmic-py allows to you evaluate G’MIC expressions and scripts easily,
but breaking the walls of the G’MIC syntax is key for newcomers to leverage the power of the G’MIC engine.

The progression of this cookbook follows more or less closely five gmic.eu website’s articles (Basics, Images, Selec-
tions and Command Decorations, Images have edges - Now What?, Conjuring Images out of the Aether and Other
Generators). It was thought of originally in this pixls.us community discussion.

3.1 Basics

TODO

3.2 Images

TODO

3.3 Selections and Command Decorations

TODO

3.4 Images have Edges - Now What?

TODO

3.5 Conjuring Images out of the Aether and Other Generators

TODO

15

https://gmic.eu/tutorial/basics.html
https://gmic.eu/tutorial/images.html
https://gmic.eu/tutorial/command_decorations.html
https://gmic.eu/tutorial/command_decorations.html
https://gmic.eu/tutorial/images_have_edges_now_what.html
https://gmic.eu/tutorial/conjuring_images_out_of_the_aether_and_other_generators.html
https://gmic.eu/tutorial/conjuring_images_out_of_the_aether_and_other_generators.html
https://discuss.pixls.us/t/gmic-tutorial-fragments/24289/5

gmic-py, Release 2.9.4-alpha1

16 Chapter 3. Cookbook for G’MIC beginners

CHAPTER

FOUR

NUMPY SUPPORT

Numpy stands for “numeric Python” and is a very famous data processing library for scientists. Since gmic-py 2.9.1,
you can convert a GmicImage from and to a numpy.ndarray for simpler manipulation. The numpy.ndarray type
is used in turn by many graphics processing toolkits.

Numpy input/output support for gmic-py is broken down into 4 methods:

• simplified input/output:

– gmic.GmicImage.from_numpy

– gmic.GmicImage.to_numpy

• full-control, also used for PIL and Scikit-image support:

– gmic.GmicImage.from_numpy_helper

– gmic.GmicImage.to_numpy_helper

All those methods are fully documented in the API Reference. If you want to implement new gmic-py conversion
methods for some library that uses numpy.ndarray‘s a lot, you might just want to import and call the ‘*_numpy_helper
methods with your own very parameters.

4.1 Must-know

• G’MIC works in 1D, 2D, 3D, or 4D. Numpy can work from 0D (scalar) to N dimensions (>4D).

• G’MIC has the following array shapes’ dimension order: (width, height, depth, spectrum).
The spectrum (or channels) dimension represents the number of values per pixel (eg. for RGB images,
spectrum=3). Numpy is shape-agnostic.

• G’MIC works in float32 (ie. 4-bytes float pixel values). Casts from and to numpy.ndarray will
be done for you using numpy.ndarray.astype(). This can be tuned by parameter GmicImage().
to_numpy_helper(astype=...).

• G’MIC can store a few billions of values per pixel (eg. not just R,G,B,A).

• G’MIC is not made for real-time image processing but is quite fast though :).

• G’MIC stores pixel values internally in a non-interleaved format, eg. R,R,R,G,G,G,B,B,B for (3,1,3)
image shape.

• For now the shape is not altered between within input/output methods provided by G’MIC. To alter those, you
can use either the permute= parameter or pre- or post-process you numpy array with a numpy transpose() call
containing several axes.

• numpy is not a requirement for the G’MIC’s Python binding to install, start and work. But is must be installed
if you happen to call the to_/from_/numpy_* methods.

17

https://numpy.org
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html

gmic-py, Release 2.9.4-alpha1

pip install numpy

• Use numpy.expand_dims and numpy.atleast_2d, numpy.atleast_3d, numpy.squeeze to fix your numpy arrays’s
dimensions.

• Advanced note: the compile flag for enabling or disabling numpy support in gmic-py is gmic_py_numpy (see
setup.py).

4.2 How-to

• The usual way to convert a Numpy array to G’MIC is as follows:

pip install numpy
pip install gmic

import gmic
import numpy.random
arr = numpy.random.rand(512,256,3)
gmic_image_from_numpy = gmic.GmicImage.from_numpy(arr)
You might have identically called gmic.GmicImage.from_numpy_helper(arr,
→˓deinterleave=True)
print(gmic_image_from_numpy)
gmic.run("display", gmic_image_from_numpy)

• The usual way to convert a G’MIC Image to Numpy is as follows:

pip install numpy
pip install gmic
pip install matplotlib

import gmic
import numpy
from matplotlib import pyplot as plt
gmic_images = []
gmic.run("sp apples", gmic_images) # store apples image into our list
numpy_image_from_gmic = gmic_images[0].to_numpy()
You might have identically called gmic.GmicImage.to_numpy_helper(arr,
→˓interleave=True)
print(numpy_image_from_gmic)
plt.imshow(numpy_image_from_gmic)
plt.show()

18 Chapter 4. Numpy support

https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
https://numpy.org/doc/stable/reference/generated/numpy.atleast_2d.html
https://numpy.org/doc/stable/reference/generated/numpy.atleast_3d.html
https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html
https://github.com/myselfhimself/gmic-py/blob/master/setup.py

CHAPTER

FIVE

PIL SUPPORT

PIL is the Python Imaging Library and allows to load, save and modify files in many formats. Nowadays Python
programmers install its Pillow fork mostly. Since gmic-py 2.9.1 you can convert a GmicImage from and to a
PIL.Image.Image.

This support is limited and does not intend to cover all types of image buffer formats accepted by PIL. Because of PIL’s
buffer codec limitations highlighted here, an intermediate pass which will be invisible to you will leverage methods
GmicImage.to_numpy_helper and GmicImage.from_numpy_helper.

We have tested only 8-bit RGB 2D files in PIL, more or fewer channels and smaller or bigger pixel values should
work. Feel free to add an issue on our tracker for things you really need related to PIL or gmic-py!

G’MIC Python’s PIL input/output conversion methods are simply:

• gmic.GmicImage.from_PIL

• gmic.GmicImage.to_PIL

Those are fully documented in the API Reference.

You are encouraged to write your own version of to_PIL() and from_PIL() in pure Python by copy-pasting the expres-
sions listed in those API definitions documentation, and tinkering with them.

5.1 Must-know

• G’MIC’s images are 3D (volumetric) non-interleaved with an almost unlimited number of 32-bit float pixel
values. Their shape axes order is x,y,z,c (or width, height, depth, channels).

• PIL works mostly in 2D interleaved, assuming here only 8-bit float pixel values (because of our limited support).
PIL Images shape are assumed to be y,x,c (or height, width, channels), which may equate to a squeezed 3D array
down to 2D.. Shape squeezing and axes flipping is what the to_PIL() will do for you.

• G’MIC PIL Image input and output methods will import numpy on the fly for you, so that module must be
installed too in addition to eg. Pillow.

5.2 How-to

• The usual way to convert a PIL image to G’MIC is as follows:

pip install Pillow
pip install gmic

19

https://pillow.readthedocs.io/en/stable/
https://github.com/python-pillow/Pillow/issues/4954
https://github.com/myselfhimself/gmic-py/issues
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html?highlight=squeeze#numpy.ndarray.squeeze
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html?highlight=squeeze#numpy.ndarray.squeeze

gmic-py, Release 2.9.4-alpha1

import gmic
import PIL.Image
#have some myfile.png somewhere or anything that PIL can open
gmic_image_from_PIL = gmic.GmicImage.from_PIL(PIL.Image.open("myfile.png"))
print(gmic_image_from_PIL)
gmic.run("display", gmic_image_from_PIL)

• The usual way to convert a G’MIC Image to PIL is as follows:

pip install Pillow

import gmic
import PIL.Image
gmic_images = []
gmic.run("sp apples", gmic_images) # store apples image into our list
PIL_image_from_gmic = gmic_images[0].to_PIL() # to_PIL can take 3 config parameters,
→˓see its documentation or run help(gmic.GmicImage.to_PIL)
print(PIL_image_from_gmic)
PIL_image_from_gmic.show()

20 Chapter 5. PIL support

CHAPTER

SIX

SCIKIT-IMAGE SUPPORT

Scikit-image (or skimage) is an image processing framework tied to Scikit. Luckily Its images are of type
numpy.ndarray. Since gmic-py 2.9.1 you can convert a GmicImage from and to a PIL.Image.Image.

The skimage support is limited for now. It relies on fine-tuned calls to the GmicImage.from_numpy_helper and
GmicImage.to_numpy_helper generic methods.

G’MIC Python’s Scikit-image input/output conversion methods are simply:

• gmic.GmicImage.from_skimage

• gmic.GmicImage.to_skimage

Those are fully documented in the API Reference.

You are encouraged to write your own version of to_skimage() and from_skimage() in pure Python by copy-pasting
the expressions listed in those API definitions documentation, and tinkering with them. You can also help improve the
converters upstream with suggestions or patches on the project repository.

6.1 Must-know

• G’MIC’s images are 3D (volumetric) non-interleaved with an almost unlimited number of 32-bit float pixel
values. Their shape axes order is x,y,z,c (or width, height, depth, channels).

• Scikit images are the same, with pixel-type agnosticity and different shape: z,y,x,c (depth or layers, height,
width, channels (or spectrum)).

6.2 How-to

• The usual way to convert a Scikit image to G’MIC is as follows:

pip install scikit-image
pip install gmic

import gmic
import skimage
astronaut = skimage.data.astronaut
gmic_image_from_skimage = gmic.GmicImage.from_skimage(astronaut)
print(gmic_image_from_skimage)
gmic.run("display", gmic_image_from_skimage)

• The usual way to convert a G’MIC Image to PIL is as follows:

21

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
https://github.com/myselfhimself/gmic-py/issues

gmic-py, Release 2.9.4-alpha1

pip install scikit-image
pip install gmic

import gmic
import skimage
from skimage.viewer import ImageViewer
gmic_images = []
gmic.run("sp apples", gmic_images) # store apples image into our list
skimage_from_gmic = gmic_images[0].to_skimage() # to_PIL can take 3 config parameters,
→˓ see its documentation or run help(gmic.GmicImage.to_PIL)
print(skimage_from_gmic)
viewer = ImageViewer(skimage_from_gmic) # you might want to call the image's .
→˓squeeze() method first to have it 2D
viewer.show()

22 Chapter 6. Scikit-Image support

CHAPTER

SEVEN

JUPYTER/IPYTHON/GCOLAB SUPPORT

Since version 2.9.1, gmic-py has been improved so that you can use gmic as a daily tool from any the following
IPython-based shells and possibly more:

• IPython is an open-source framework improving Python shell experience in consoles, web browsers and desktop
user interfaces.

• Jupyter is a sub-project of the IPython-based initiative providing amongst others JupyterLab (aka Jupyter Note-
books), a web-browser application for editing scientifical Python scripts in runnable sub-steps.

• Jupyter QtConsole is an implementation of the JupyterLab as as desktop application using the Qt GUI frame-
work.

• Google Colab is a Google alternative to JupyterLab, also leveraging the IPython technology.

Example screenshots:

Fig. 1: _static/images/jupyter_example.png display

23

https://ipython.org/
https://jupyter.org/
https://qtconsole.readthedocs.io/en/stable/
https://colab.research.google.com/

gmic-py, Release 2.9.4-alpha1

Fig. 2: _static/images/gcolab_example.png display

7.1 How-to

7.1.1 Installing

Unless you are using a local JupyterLab (ie. web interface) or Jupyter QtConsole from your own virtual-environment
where gmic-py can be pre-installed using pip install gmic, here is an example command to install gmic-py:

!pip install gmic # or gmic==2.9.1-alpha6

Collecting gmic==2.9.1-alpha1
Downloading https://files.pythonhosted.org/packages/c9/43/

→˓f8cbc667ff1e8eb556897c256da6b6317c94dc8e6b9b930a0af0b5690d2f/gmic-2.9.1a1-cp36-
→˓cp36m-manylinux2014_x86_64.whl (8.7MB)

|| 8.8MB 2.8MB/s
Collecting wurlitzer

Downloading https://files.pythonhosted.org/packages/0c/1e/
→˓52f4effa64a447c4ec0fb71222799e2ac32c55b4b6c1725fccdf6123146e/wurlitzer-2.0.1-py2.
→˓py3-none-any.whl
Installing collected packages: wurlitzer, gmic
Successfully installed gmic-2.9.1a1 wurlitzer-2.0.1

7.1.2 Using

The following examples have nothing special compared to a regular gmic-py usage and were tested on Google Colab,
a web type of Jupyter/IPython notepad.

24 Chapter 7. Jupyter/IPython/GColab support

gmic-py, Release 2.9.4-alpha1

import gmic
You might optionnally see a message as follows:
gmic-py: wurlitzer found (for G'MIC stdout/stderr redirection) and enabled
→˓automatically through IPython '%load_ext wurlitzer'.
images = []
gmic.run("300,400,1,3 fx_camouflage 9,12,100,30,46,33,75,90,65,179,189,117,255,246,
→˓158 display", images)
A matplotlib or other type of image view should pop inline
Expected text output:
[gmic]-1./ Display image [0], from point (150,200,0) (console output only, no
→˓display available).
[0] = '[unnamed]':
size = (300,400,1,3) [1406 Kio of floats].
data = (95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,95.8,(...),75.4,75.
→˓4,75.4,75.4,75.4,75.4,75.4,75.4,75.4,75.4,75.4,75.4).
min = 30, max = 255, mean = 111.497, std = 51.1507, coords_min = (125,0,0,0),
→˓coords_max = (167,18,0,0).

Fig. 3: 300,400,1,3 fx_camouflage 9,12,100,30,46,33,75,90,65,179,189,117,255,246,158

7.1. How-to 25

gmic-py, Release 2.9.4-alpha1

import gmic
images = []
Note that the "sample" command relies exclusively on gmic.eu online images
→˓reachability
So the following might not work if you are using a remote JupyterLab or Google
→˓Colab shell
depending on your platforms' proxy parameters
gmic.run("sp apples print", images)
No image view should pop (the print command only prints textual information?
Outputs:
[gmic]-1./ Print image [0] = 'apples'.
[0] = 'apples':
size = (640,400,1,3) [3000 Kio of floats].
data = (20,22,20,20,20,22,22,22,22,22,22,20,(...),1,1,1,1,1,1,1,1,1,1,1,1).
min = 1, max = 250, mean = 58.5602, std = 59.8916, coords_min = (317,306,0,1),
→˓coords_max = (430,135,0,0).
print(images)
Outputs:
[<gmic.GmicImage object at 0x7f23fc2f6d30 with _data address at 0x7f23fae17010,
→˓w=640 h=400 d=1 s=3 shared=0>]

Fig. 4: sp apples

7.2 Implementation details

The core tricks of gmic-py’s support for IPython-based web-based graphical shells are:

1. for text display (eg. for the display and print commands: G’MIC standard output redirection towards the IPython

26 Chapter 7. Jupyter/IPython/GColab support

https://gmic.eu/tutorial/_display.shtml
https://gmic.eu/reference.shtml#print

gmic-py, Release 2.9.4-alpha1

user output. For this the Python wurlitzer cross-platform module has been used and added as a gmic-py perma-
nent dependency, leveraging its IPython enabling macro, if an IPython shell is detected.

2. for non-popping G’MIC image display window: transparent replacement of G’MIC display command calls into
output calls as PNG format into your (or the host) computer’s temporary directory, followed by IPython or
Matplotlib display calls. For this, a pure C/Python simple adaptor code has been added.

For desktop UI implementations such as Jupyter QtConsole, since your operating systems’ DISPLAY environment
variable is set, above point 1. is still relevant, but the G’MIC native display will probably pop up instead of the PNG
trick.

The Jupyter support in gmic-py can be disabled before module compilation by unsetting the
gmic_py_jupyter_ipython_display compiler variable. See setup.py.

7.2. Implementation details 27

https://github.com/minrk/wurlitzer
https://gmic.eu/tutorial/_display.shtml
https://gmic.eu/reference.shtml#output
https://jupyter.org/qtconsole/stable/
https://github.com/myselfhimself/gmic-py/blob/13c3b72f1de2f759bc830a048f24bf55b11c3d0e/setup.py#L32

gmic-py, Release 2.9.4-alpha1

28 Chapter 7. Jupyter/IPython/GColab support

CHAPTER

EIGHT

DEVELOPING, COMPILING, TESTING, RELEASING

gmic-py is a C/Python binding of C++ which must be compiled or pre-compiled for any target machines in order
to work. Third-party frameworks for writing bindings such as Pybind11 or Pyrex have not been used because of the
binding’s simplicity.

Any Linux / Mac OS / Unix operating system with Python >= 3.6 (possibly less) should be able to compile the binding
without any non-standard Python tooling. 32bit architectures are not supported since Q3 2020, in favor of pure x86_64,
but the project used to compile well against the former.

8.1 TL;DR building gmic-py on Linux

You can build G’MIC by forcing pip install to build it from a source tarball:

pip install gmic --compile

You can build G’MIC from a Git repository clone. For this run the following lines one by one, deciding on your
options:

git clone https://github.com/myselfhimself/gmic-py --depth=1

For Centos / Redhat / Fedora..:
yum install fftw-devel libpng-devel zlib-devel libgomp libtiff-devel libjpeg-devel
→˓wget

For Ubuntu
sudo apt-get install libfftw3-dev libcurl4-openssl-dev libpng-dev liblz-dev libgomp1
→˓libtiff-dev libjpeg-dev wget

Download libgmic's preassembled source archive (equates to 2 git clone commands + 2-
→˓3 make commands..)
bash build_tools.bash 1_clean_and_regrab_gmic_src

For building linux-repaired wheels, using the manylinux docker images, run:
bash build_tools.bash 33_build_manylinux # to focus on one version, add eg. 'cp36' as
→˓a final parameter
ls wheelhouse/ # here you have .whl files

For building just a non-repaired debug .so file the current machine:
bash build_tools.bash 2b_compile_debug
ls build/lib* # cd into any directory with a .so file and run python3 in it, to be
→˓able to 'import gmic'

Same but optmimized non-repaired .so file
(continues on next page)

29

https://pybind11.readthedocs.io/en/stable/
https://wiki.python.org/moin/Pyrex

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

bash build_tools.bash 2_compile
ls build/lib*

8.2 gmic-py development to release lifecycle (overview)

In very short, the G’MIC Python binding per-version lifecycle is as follows: #. grab libgmic’s C++ targetted version
#. tune binding code and pytest cases #. compile and test locally #. git push with a tag to trigger optimized releases
building and sending to G’MIC’s pypi.org project

Go to `gmic-py development to release lifecycle (detailed)‘_ for more details on the right tooling to use for each
step.

Note: Steps 1-3 correspond to the bash build_tools.bash 00_all_steps command.

8.3 Github Actions Continuous integration workflows

Looking that the Github project’s Action’s tab or the .github/workflows files, you will notice the following discting
workflows:

• Linux debug (the fastest to yield a result)

• MacOS optimized

• Manylinux optimized

• Manylinux optimized, on Git tag push optimized with release (to pypi.org)

• MacOS optimized on Git tag push with release (to pypi.org)

All of them leverage build_tools.bash and show the needed package for each OS.

8.4 build_tools.bash - a developer’s Swiss army knife

Located in the Git repository’s root, build_tools.bash is used for developing, building and releasing gmic-py.

Before running build_tools.bash, you should install the developer requirements first:

pip install -r dev-requirements.txt

Then, a running the former script without parameters or with --help shows the targeted G’MIC version and the
available commands.

8.4.1 Centralized version for development and continuous-integration-based re-
leasing

The targeted G’MIC version is the available version of G’MIC (according to its source archives and pre-releases) for
which we are developing a binding and preparing a release. It is stored in the VERSION file (add no trailing character
after the version number there!) for use by build_tools.bash, setup.py the continuous integration scripts.

30 Chapter 8. Developing, compiling, testing, releasing

https://pypi.org/project/gmic/
https://github.com/myselfhimself/gmic-py/actions
https://github.com/myselfhimself/gmic-py/tree/master/.github/workflows
https://github.com/myselfhimself/gmic-py/blob/master/build_tools.bash
https://gmic.eu/files/source/
https://gmic.eu/files/prerelease/

gmic-py, Release 2.9.4-alpha1

8.4.2 Calling build_tools.bash

To call any command just append its name as a first parameter:

$ bash build_tools.bash <the command name>
$ # For example:
$ bash build_tools.bash1_clean_and_regrab_gmic_src # Will grab the libgmic C++ code

8.4.3 Rapid sub-commands overview and explanations

Exhaustive commands documentation will not be covered hereafter. In order to understand them, you should look
at their implementations within the bash script and their use within the .github/worfklows/ Github Action continuous
integration recipes. In it, one function equates to one command.

• 00_all_steps: Use this if you are a beginner with build_tools.bash and have time on
a Linux machine with a Python virtual environment, it will grab G’MIC’s C++ source, com-
pile, test and bundle it without making any release. More experienced developer in the
project will likely run single steps only. This can also be run from a Docker image, al-
though the related Dockerfile now only survives in Git history <https://github.com/myselfhimself/gmic-
py/blob/fc12cb74f4b02fbfd83e9e9fba44ba7a4cee0d93/Dockerfile>_ because it is used very rarely.

• 1_clean_and_regrab_gmic_src: download libgmic’s C++ code into the src/ directory (which is emp-
tied beforehand)

• 11_send_to_pypi: send built wheels (.whl) to pypi.org using twine

• 2_compile: compile with optimization (long). On Linux a .so file is generated in the build/ directory.

• 2b_compile_debug: compile without optimization (fast) and with debug symbols.

• 20_reformat_all: reformat both Python and C code (note this is not done after compile time in
manylinux to avoid crashes). You usually run this by hand before doing a Git commit.

• 21_check_c_style: using clang-format.

• 22_reformat_c_style: using clang-format.

• 23i_install_black_python_formatter: installed a locked version of the black Python formatter and
checker.

• 23_check_python_style: using black.

• 24_reformat_python_style: using black.

• 33_build_manylinux: build gmic-py with optimized compiling using the PEP 571 standard for old
Linux distributions. This technique nicknamed manylinux ships with a Docker image we use on Github Actions.
Rarely run locally because it is super long, but this is safe as it is dockerized. Check for your built wheels in the
wheels/ directory.

• 3_test_compiled_so: runs pytest cases from tests/ onto your build/lib* shared gmic-py library.

• 3b_test_compiled_so_no_numpy: similar by omitting the Numpy-support test suite.

• 31_test_compiled_so_filters_io: very long experimental test suite with G’MIC gmic cli command
vs gmic-py module output images result comparison.

• 4_build_wheel: build a .whl wheel without embedding external shared libraries (ie. doing a “repair” step
as needed on Linuxes, but not on MacOS or Windows). When run, head over to the build/dist* directory.

• 5_test_wheel: runs pytest cases over the last built wheel.

8.4. build_tools.bash - a developer’s Swiss army knife 31

https://github.com/myselfhimself/gmic-py/tree/master/.github/workflows
https://clang.llvm.org/docs/ClangFormat.html
https://black.readthedocs.io/en/stable/
https://github.com/pypa/manylinux

gmic-py, Release 2.9.4-alpha1

8.5 Recommended compilers

For proper OpenMP support - which is highly recommended, our build bots use GCC for Linux (CLang should work)
and CLang version 6 (not newer) on MacOS.

For the upcoming Windows support, MSYS2 - mimicking the UNIX standards - will be the envisioned environment,
instead of MSVC. The former compiler works already best with G’MIC (C++).

8.6 Library requirements

gmic-py embeds libgmic C++ library and has the same library needs as the latter. Namely zlib and libpng, optionally
libfftw3, libjpeg, libtiff, OpenMP. gmic-py’s setup.py file shows the use of the Unix-compatible pkgconfig module,
for available libraries detection and toggling in order to run a smooth compilation with you having to tune compile
flags at all.

Note that our releases are all built against: zlib, libpng, libopenmp, libtiff, libjpeg, similarly to libgmic releases.
Libgmic IS embedded inside the gmic-py binding.

8.7 Optimized vs. debugging

For testing and daily development, gmic-py can be compiled faster with no optimization and with debug symbols
attached. This is down through a hackish --debug flag. This is what is run through

From setup.py:

debug_enabled = "--debug" in sys.argv

For releases, an optimized build is generated, just by omitting the --debug flag.

For debugging segfaults or other situations, you can run gdb python and explore with the gdb command line. You can
also use CLion (or any C++ editor), load the C source and Python script of your own using the gmic module, run your
Python script in Debug mode or with some blocking input() or other pure-python breakpoing for example, and attach
with your C++ IDE to the latest Python process run. Here is a similar very barebone way of debugging with IPython
and lldb (or gdb).

8.8 On the fly compiling with pip

You can compile automatically through a pipwhich will run the setup.py compiling steps for you, it will download
gmic-py’s source from its most stable origin: pypi.org.

pip install --no-binary gmic

8.9 Compiling from a git clone

Compiling locally from a Git clone is usually done with GCC/CLang and gets inspiration from libgmic’s own Makefile.
There are no special tricks, but Python tools are used best instead of direct compiler calling.

setup.py build # will need a pip install pkgconfig first

32 Chapter 8. Developing, compiling, testing, releasing

https://www.openmp.org/
https://gmic.eu/libgmic.shtml
https://github.com/myselfhimself/gmic-py/blob/master/setup.py
https://pypi.org/project/pkgconfig/
https://www.jetbrains.com/help/clion/attaching-to-local-process.html
https://www.jetbrains.com/help/clion/attaching-to-local-process.html
http://johntfoster.github.io/posts/debugging-cc%2B%2B-libraries-called-by-python.html
http://johntfoster.github.io/posts/debugging-cc%2B%2B-libraries-called-by-python.html

gmic-py, Release 2.9.4-alpha1

Which is done by build_tools.bash 2_compile or 2b_compile_debug variant as well.

Though you will libgmic’s source first. See the next section instead for doing first things first.

8.10 gmic-py development to release lifecycle (detailed)

1. once for all, install developer’s requirements in a project own virtual environment:

pip install -r dev-requirements.txt

2. change the targetted G’MIC version number (we follow libgmic’s versioning) in VERSION. build_tools.
bash, setup.py and the Github Actions workflow files will all rely on this central piece of data!

echo "2.9.1" > VERSION

Note: this version can be overriden on a per-command basis for build_tools.bash by setting the
GMIC_VERSION environment variable. Read build_tools.bash code for details.

3. grab the related libgmic C++ source

bash build_tools.bash 1_clean_and_regrab_gmic_src

4. edit gmicpy.cpp gmicpy.h setup.py the pytest tests/

5. edit the documentation in docs/ (it gets deployed to readthedocs.io on each Git push)

6. rebuild documentation for previewing:

pip install sphinx # one time only
cd docs/; make html

7. compile in debug mode

bash build_tools.bash 2b_compile_debug

8. run few or all unit tests locally

bash build_tools.bash 3_test_compiled_so # for all tests
bash build_tools.bash 3b_test_compiled_so_no_numpy # for all tests, except numpy ones
bash build_tools.bash 3b_test_compiled_so_no_numpy openmp # all tests the name of
→˓which matches the *openmp* wildcard

9. hand test interactively (outside any Python virtual environment, or using an environment with gmic uninstalled)

cd build/lib.linux-x86_64-3.6/
ls # shows gmic.cpython-36m-x86_64-linux-gnu.so
python3
import gmic
gmic.run("sp earth") # etc

10. check linked shared libraries

cd build/lib.linux-x86_64-3.6/
ldd gmic.cpython-36m-x86_64-linux-gnu.so

11. Git push without any tag to trigger Github Actions for Mac OS and Linux debug and optimized builds, as well
as readthedocs.io documentation building

8.10. gmic-py development to release lifecycle (detailed) 33

gmic-py, Release 2.9.4-alpha1

git push # (origin master) or any other Github branch

12. set a Git tag and Git push to trigger the former Github Actions + identical ones optimized with pypi.org release
wheels upload

git tag -a v2.9.1 # In this project, the tag must start with v for releasing
git push # origin master or any other Github branch

13. look at pypi.org’s gmic module released contents

14. test online releases by hand (in a Python environment without gmic installed)

pip install gmic # or gmic==2.9.1 in our case
python3
import gmic
gmic.run("sp earth") # etc
py.test tests/

34 Chapter 8. Developing, compiling, testing, releasing

https://pypi.org/project/gmic/

CHAPTER

NINE

API REFERENCE

G’MIC image processing library Python binary module.

Use gmic.run or gmic.Gmic to run G’MIC commands inside the G’MIC C++ interpreter, manipulate gmic.
GmicImage which has numpy/PIL input/output support, assemble lists of gmic.GmicImage items inside read-
writeable pure-Python list objects.

class gmic.Gmic
Bases: object

run(command, images=None, image_names=None)
Run G’MIC interpreter following a G’MIC language command(s) string, on 0 or more namable
GmicImage items.

Note (single-image short-hand calling): if images is a GmicImage, then image_namesmust be either
a str or be omitted.

Example

Here is a long example describing several use cases:

import gmic
import struct
import random
instance1 = gmic.Gmic('echo_stdout \'instantiation and run all in one\')
instance2 = gmic.Gmic()
instance2.run('echo_stdout \'hello world\'') # G'MIC command without images
→˓parameter
a = gmic.GmicImage(struct.pack(*('256f',) + tuple([random.random() for a in
→˓range(256)])), 16, 16) # Build 16x16 greyscale image
instance2.run('blur 12,0,1 resize 50%,50%', a) # Blur then resize the image
a._width == a._height == 8 # The image is half smaller
instance2.run('display', a) # If you have X11 enabled (linux only), show the
→˓image in a window
image_names = ['img_' + str(i) for i in range(10)] # You can also name your
→˓images if you have several (optional)
images = [gmic.GmicImage(struct.pack(*((str(w*h)+'f',) + (i*2.0,)*w*h)), w,
→˓h) for i in range(10)] # Prepare a list of image
instance1.run('add 1 print', images, image_names) # And pipe those into the
→˓interpreter
instance1.run('blur 10,0,1 print', images[0], 'my_pic_name') # Short-hand 1-
→˓image calling style

Parameters

35

gmic-py, Release 2.9.4-alpha1

• command (str) – An image-processing command in the G’MIC language

• images (Optional[Union[List[gmic.GmicImage], gmic.
GmicImage]]) – A list of GmicImage items that G’MIC will edit in place, or a
single gmic.GmicImage which will used for input only. Defaults to None. Put a list
variable here, not a plain []. If you pass a list, it can be empty if you intend to fill or
complement it using your G’MIC command.

• image_names (Optional[List<str>]) – A list of names for the images, defaults
to None. In-place editing by G’MIC can happen, you might want to pass your list as a
variable instead.

Returns Returns None or raises a GmicException.

Return type None

Raises GmicException – This translates’ G’MIC C++ same-named exception. Look at the
exception message for details.

exception gmic.GmicException
Bases: Exception

Only exception class of the Gmic module.

This wraps G’MIC’s C++ gmic_exception. Refer to the exception message itself.

class gmic.GmicImage(data=None, width=1, height=1, depth=1, spectrum=1, shared=False)
Bases: object

Simplified mapping of the C++ gmic_image type. Stores a binary buffer of data, a height, width, depth,
spectrum.

Example

Several ways to use a GmicImage simply:

import gmic
empty_1x1x1_black_image = gmic.GmicImage() # or gmic.GmicImage(None,1,1,1,1) for
→˓example
import struct
i = gmic.GmicImage(struct.pack('2f', 0.0, 1.5), 1, 1) # 2D 1x1 image
gmic.run('add 1', i) # GmicImage injection into G'MIC's interpreter
i # Using GmicImage's repr() string representation
Output: <gmic.GmicImage object at 0x7f09bfb504f8 with _data address at
→˓0x22dd5b0, w=1 h=1 d=1 s=1 shared=0>
i(0,0) == 1.0 # Using GmicImage(x,y,z) pixel reading operator after initialization
gmic.run('resize 200%,200%', i) # Some G'MIC operations may reallocate the image
→˓buffer in place without risk
i._width == i._height == 2 # Use the _width, _height, _depth, _spectrum, _data, _
→˓data_str, _is_shared read-only attributes

Parameters

• data (Optional[bytes]) – Raw data for the image (must be a sequence of 4-bytes
floats blocks, with as many blocks as all the dimensions multiplied together).

• width (Optional[int]) – Image width in pixels. Defaults to 1.

• height (Optional[int]) – Image height in pixels. Defaults to 1.

• depth (Optional[int]) – Image height in pixels. Defaults to 1.

36 Chapter 9. API Reference

gmic-py, Release 2.9.4-alpha1

• spectrum (Optional[int]) – Number of channels per pixel. Defaults to 1.

• shared (Optional[bool]) – C++ option: whether the buffer should be shareable be-
tween several GmicImages and operations. Defaults to False.

Note: GmicImage(x=0, y=0, z=0, s=0)

This instance method allows you to read pixels in a GmicImage for given coordinates.

You can read, but cannot write pixel values by passing some or all coordinates the following way:

import gmic
images = []
gmic.run("sp apples", images)
image = images[0]
print(image(0,2,0,2)) # or image(y=2,z=2)
print(image(0,0,0,0)) # or image()
for x in range(image._width):

for y in range(image._height):
for z in range(image._depth):

for c in range(image._spectrum):
print(image(x,y,z,c))

__copy__()
Copy method for copy.copy() support. Deepcopying and pickle-ing are not supported.

from_PIL(pil_image)
Make a GmicImage from a 2D PIL.Image.Image object. Equates to gmic.GmicImage.
from_numpy_helper(numpy.array(pil_image), deinterleave=True). Will import
PIL.Image and numpy for conversion.

Parameters pil_image (PIL.Image.Image) – An image to convert into GmicImage.

Returns A new gmic.GmicImage based on the input PIL.Image.Image data.

Return type gmic.GmicImage

from_numpy(numpy_array)
Make a GmicImage from a 1-4 dimensions numpy.ndarray. Simplified version of GmicImage.
from_numpy_helper with deinterleave=True.

Parameters numpy_array (numpy.ndarray) – A non-empty 1D-4D Numpy array.

Returns A new GmicImage based the input numpy.ndarray data.

Return type GmicImage

Raises GmicException, TypeError – Look at the exception message for details. Matri-
ces with dimensions <1D or >4D will be rejected.

from_numpy_helper(numpy_array, deinterleave=False, permute=”)
Make a GmicImage from a 1-4 dimensions numpy.ndarray.

G’MIC works with (width, height, depth, spectrum/channels) matrix layout, with 32bit-float pixel val-
ues deinterleaved (ie. RRR,GGG,BBB). If your matrix is less than 4D, G’MIC will tentatively add
append void dimensions to it (eg. for a shape of (3,1) -> (3,1,1,1)). You can avoid this by us-
ing numpy.expand_dims or numpy.atleast_*d functions yourself first. If your pixel values
(ie. numpy.ndarray.dtype) are not in a float32 format, G’MIC will tentatively call numpy.
astype(numpy_array, numpy.float32) to cast its contents first.

37

gmic-py, Release 2.9.4-alpha1

Example

Several ways to use a GmicImage simply:

import gmic
empty_1x1x1_black_image = gmic.GmicImage() # or gmic.GmicImage(None,1,1,1,1)
→˓for example
import struct
i = gmic.GmicImage(struct.pack('2f', 0.0, 1.5), 1, 1) # 2D 1x1 image
gmic.run('add 1', i) # GmicImage injection into G'MIC's interpreter
i # Using GmicImage's repr() string representation
Output: <gmic.GmicImage object at 0x7f09bfb504f8 with _data address at
→˓0x22dd5b0, w=1 h=1 d=1 s=1 shared=0>
i(0,0) == 1.0 # Using GmicImage(x,y,z) pixel reading operator after
→˓initialization
gmic.run('resize 200%,200%', i) # Some G'MIC operations may reallocate the
→˓image buffer in place without risk
i._width == i._height == 2 # Use the _width, _height, _depth, _spectrum, _
→˓data, _data_str, _is_shared read-only attributes

Parameters

• numpy_array (numpy.ndarray) – A non-empty 1D-4D Numpy array.

• deinterleave (Optional[bool]) – If True, pixel channel values will be dein-
terleaved inside the GmicImage data. If False, pixel channels vector values will be
untouched. Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the input matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (no permutation).

Returns A new GmicImage based the input numpy.ndarray data.

Return type GmicImage

Raises GmicException, TypeError – Look at the exception message for details. Matri-
ces with dimensions <1D or >4D will be rejected.

from_skimage()
GmicImage.from_numpy_helper(numpy_array, deinterleave=False, permute=”)

Make a GmicImage from a 1-4 dimensions numpy.ndarray.

G’MIC works with (width, height, depth, spectrum/channels) matrix layout, with 32bit-float pixel val-
ues deinterleaved (ie. RRR,GGG,BBB). If your matrix is less than 4D, G’MIC will tentatively add
append void dimensions to it (eg. for a shape of (3,1) -> (3,1,1,1)). You can avoid this by us-
ing numpy.expand_dims or numpy.atleast_*d functions yourself first. If your pixel values
(ie. numpy.ndarray.dtype) are not in a float32 format, G’MIC will tentatively call numpy.
astype(numpy_array, numpy.float32) to cast its contents first.

Example

Several ways to use a GmicImage simply:

import gmic
empty_1x1x1_black_image = gmic.GmicImage() # or gmic.GmicImage(None,1,1,1,1)
→˓for example

(continues on next page)

38 Chapter 9. API Reference

https://gmic.eu/reference.shtml#permute

gmic-py, Release 2.9.4-alpha1

(continued from previous page)

import struct
i = gmic.GmicImage(struct.pack('2f', 0.0, 1.5), 1, 1) # 2D 1x1 image
gmic.run('add 1', i) # GmicImage injection into G'MIC's interpreter
i # Using GmicImage's repr() string representation
Output: <gmic.GmicImage object at 0x7f09bfb504f8 with _data address at
→˓0x22dd5b0, w=1 h=1 d=1 s=1 shared=0>
i(0,0) == 1.0 # Using GmicImage(x,y,z) pixel reading operator after
→˓initialization
gmic.run('resize 200%,200%', i) # Some G'MIC operations may reallocate the
→˓image buffer in place without risk
i._width == i._height == 2 # Use the _width, _height, _depth, _spectrum, _
→˓data, _data_str, _is_shared read-only attributes

Parameters

• numpy_array (numpy.ndarray) – A non-empty 1D-4D Numpy array.

• deinterleave (Optional[bool]) – If True, pixel channel values will be dein-
terleaved inside the GmicImage data. If False, pixel channels vector values will be
untouched. Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the input matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (no permutation).

Returns A new GmicImage based the input numpy.ndarray data.

Return type GmicImage

Raises GmicException, TypeError – Look at the exception message for details. Matri-
ces with dimensions <1D or >4D will be rejected.

to_PIL(astype=numpy.uint8, squeeze_shape=True, mode=’RGB’)
Make a 2D 8-bit per pixel RGB PIL.Image from any GmicImage. Equates
to PIL.Image.fromarray(self.to_numpy_helper(astype=astype,
squeeze_shape=squeeze_shape, interleave=True, permute='zyxc'), mode).
Will import PIL.Image and numpy.

This method uses numpy for conversion. Thus astype is used in a numpy.ndarray.astype()`
conversion pass and samewise for ``squeeze_shape. :param astype: Will be used for
casting your image’s pixel. :type astype: type :param squeeze_shape: if True, your image shape has
‘1’ components removed, is usually necessary to convert from G’MIC 3D to PIL.Image 2D only. :type
squeeze_shape: bool :param mode: the PIL Image mode to use. see https://pillow.readthedocs.io/en/stable/
handbook/concepts.html#concept-modes :type mode: str

Returns A new PIL.Image based on the instance GmicImage data from which you call this
method.

Return type PIL.Image

to_numpy()
Make a numpy.ndarray from a GmicImage. Simplified version of GmicImage.to_numpy_helper
with interleave=True.

Returns A new numpy.ndarray based the input GmicImage data.

Return type numpy.ndarray

39

https://gmic.eu/reference.shtml#permute
https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes
https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes

gmic-py, Release 2.9.4-alpha1

to_numpy_helper(astype=numpy.float32, interleave=False, permute=”, squeeze_shape=False)
Make a numpy.ndarray from a GmicImage. G’MIC does not squeeze dimensions internally, so unless you
use the squeeze_shape flag calling numpy.squeeze for you, the output matrix will be 4D.

Parameters

• astype (numpy.dtype) – The type to which G’MIC’s float32 pixel values will cast to
for the output matrix.

• interleave (Optional[bool]) – If True, pixel channel values will be interleaved
(ie. RGB, RGB, RGB) within the numpy array. If False, pixel channels vector values
will be untouched/deinterleaved (ie. RRR,GGG,BBB). Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the output matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (ie. no permutation).

Returns A new numpy.ndarray based the input GmicImage data.

Return type numpy.ndarray

to_skimage()
GmicImage.to_numpy_helper(astype=numpy.float32, interleave=False, permute=”,
squeeze_shape=False)

Make a numpy.ndarray from a GmicImage. G’MIC does not squeeze dimensions internally, so unless you
use the squeeze_shape flag calling numpy.squeeze for you, the output matrix will be 4D.

Parameters

• astype (numpy.dtype) – The type to which G’MIC’s float32 pixel values will cast to
for the output matrix.

• interleave (Optional[bool]) – If True, pixel channel values will be interleaved
(ie. RGB, RGB, RGB) within the numpy array. If False, pixel channels vector values
will be untouched/deinterleaved (ie. RRR,GGG,BBB). Defaults to False.

• permute (Optional[str]) – If non-empty, a G’MIC permute operation will be
run with this parameter (eg. yxzc) on the output matrix before saving into the GmicImage.
See https://gmic.eu/reference.shtml#permute Defaults to “” (ie. no permutation).

Returns A new numpy.ndarray based the input GmicImage data.

Return type numpy.ndarray

gmic.run(command, images=None, image_names=None)
Run the G’MIC interpreter with a G’MIC language command(s) string, on 0 or more nameable GmicImage(s).
This is a short-hand for calling gmic.Gmic().run with the exact same parameters signature.

Note (single-image short-hand calling): if images is a GmicImage, then image_names must be either a
str or be omitted.

Note (interpreter warm-up): calling gmic.run multiple times is inefficient as it spawns then drops a new
G’MIC interpreter instance for every call. For better performance, you can tie a gmic.GmicG’MIC interpreter
instance to a variable instead and call its run method multiple times. Look at gmic.Gmic.run for more
information.

Example

Several ways to use the module-level gmic.run() function:

40 Chapter 9. API Reference

https://gmic.eu/reference.shtml#permute
https://gmic.eu/reference.shtml#permute

gmic-py, Release 2.9.4-alpha1

import gmic
import struct
import random
gmic.run('echo_stdout \'hello world\'') # G'MIC command without images parameter
a = gmic.GmicImage(struct.pack(*('256f',) + tuple([random.random() for a in
→˓range(256)])), 16, 16) # Build 16x16 greyscale image
gmic.run('blur 12,0,1 resize 50%,50%', a) # Blur then resize the image
a._width == a._height == 8 # The image is half smaller
gmic.run('display', a) # If you have X11 enabled (linux only), show the image in
→˓a window
image_names = ['img_' + str(i) for i in range(10)] # You can also name your
→˓images if you have several (optional)
images = [gmic.GmicImage(struct.pack(*((str(w*h)+'f',) + (i*2.0,)*w*h)), w, h)
→˓for i in range(10)] # Prepare a list of image
gmic.run('add 1 print', images, image_names) # And pipe those into the interpreter
gmic.run('blur 10,0,1 print', images[0], 'my_pic_name') # Short-hand 1-image
→˓calling style

Parameters

• command (str) – An image-processing command in the G’MIC language

• images (Optional[Union[List[gmic.GmicImage], gmic.GmicImage]])
– A list of GmicImage items that G’MIC will edit in place, or a single gmic.GmicImage
which will used for input only. Defaults to None. Put a list variable here, not a plain [].
If you pass a list, it can be empty if you intend to fill or complement it using your G’MIC
command.

• image_names (Optional[List<str>]) – A list of names for the images, defaults to
None. In-place editing by G’MIC can happen, you might want to pass your list as a variable
instead.

Returns Returns None or raises a GmicException.

Return type None

Raises GmicException – This translates’ G’MIC C++ same-named exception. Look at the ex-
ception message for details.

41

gmic-py, Release 2.9.4-alpha1

42 Chapter 9. API Reference

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

43

gmic-py, Release 2.9.4-alpha1

44 Chapter 10. Indices and tables

PYTHON MODULE INDEX

g
gmic, 35

45

gmic-py, Release 2.9.4-alpha1

46 Python Module Index

INDEX

Symbols
__copy__() (gmic.GmicImage method), 37

F
from_numpy() (gmic.GmicImage method), 37
from_numpy_helper() (gmic.GmicImage method),

37
from_PIL() (gmic.GmicImage method), 37
from_skimage() (gmic.GmicImage method), 38

G
Gmic (class in gmic), 35
gmic (module), 35
GmicException, 36
GmicImage (class in gmic), 36

R
run() (gmic.Gmic method), 35
run() (in module gmic), 40

T
to_numpy() (gmic.GmicImage method), 39
to_numpy_helper() (gmic.GmicImage method), 39
to_PIL() (gmic.GmicImage method), 39
to_skimage() (gmic.GmicImage method), 40

47

	Installing
	For Linux / Unix
	For Mac OS
	For Windows (future)

	Quickstart
	1. Install gmic-py
	2. Run a simple G’MIC effect and view it
	3. Save your result to a file
	4. Dealing with GmicImage and GmicImage lists
	5. Working with the Numpy support

	Cookbook for G’MIC beginners
	Basics
	Images
	Selections and Command Decorations
	Images have Edges - Now What?
	Conjuring Images out of the Aether and Other Generators

	Numpy support
	Must-know
	How-to

	PIL support
	Must-know
	How-to

	Scikit-Image support
	Must-know
	How-to

	Jupyter/IPython/GColab support
	How-to
	Installing
	Using

	Implementation details

	Developing, compiling, testing, releasing
	TL;DR building gmic-py on Linux
	gmic-py development to release lifecycle (overview)
	Github Actions Continuous integration workflows
	build_tools.bash - a developer’s Swiss army knife
	Centralized version for development and continuous-integration-based releasing
	Calling build_tools.bash
	Rapid sub-commands overview and explanations

	Recommended compilers
	Library requirements
	Optimized vs. debugging
	On the fly compiling with pip
	Compiling from a git clone
	gmic-py development to release lifecycle (detailed)

	API Reference
	Indices and tables
	Python Module Index
	Index

