

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: _images/logo4.jpg]G'MIC Logo
[image: _images/910f9c0d6265087f631cd6006d3a2c8d501f46a2.png]Python Logo

Python binding for G’MIC - A Full-Featured Open-Source Framework for Image Processing

https://gmic.eu

gmic-py

[image: _images/badge.svg]
[image: _images/badge1.svg]
[image: _images/badge2.svg]

The aim of this project is to provide an official Python 3 package of the G’MIC image processing library, with its platform-specific binaries bundled or auto-compiled.
When this matures, running pip install gmic-py should be all you need to get ready and use G’MIC within data-science, games, video editing, texture editing etc.. Python scripts.

This project is a work in progress and lives under the CeCILL license (similar to GNU Public License).

Quickstart

You need Python 3.x and pip installed.
Things work best with the last development version for now :)

pip install gmic # Consider adding --only-binary if your machine makes you compile from source
python3

import gmic
import struct
import random

random_32x32_image = gmic.GmicImage(struct.pack('1024f', *[random.randint(0, 255) for i in range(1024)]), 32, 32)
random_32x32_image
Output: <gmic.GmicImage object at 0x7f1084c41c90 with _data address at 0x2772010, w=32 h=32 d=1 s=1 shared=0>

gmic.run("print", images=random_32x32_image)
Output:
[gmic]-1./ Print image [0] = '[unnamed]'.
[0] = '[unnamed]':
size = (32,32,1,1) [4096 b of floats].
data = (152,88,134,92,50,179,33,248,18,81,84,187,(...),54,42,179,121,125,74,67,171,224,240,174,96).
min = 0, max = 255, mean = 127.504, std = 75.1126, coords_min = (22,1,0,0), coords_max = (8,2,0,0).

Reuse the same interpreter for better performance
reusable_gmic_instance = gmic.Gmic()
for a in range(10):
 reusable_gmic_instance.run("blur 2 print", images=random_32x32_image, image_names="my random blurred picture") # add "display" after "print" for a preview on Linux
Output (first iteration only):
[gmic]-1./ Print image [0] = 'my random blurred picture'.
[0] = 'my random blurred picture':
size = (32,32,1,1) [4096 b of floats].
data = (146.317,134.651,125.137,117.714,115.019,118.531,121.125,123.81,121.736,120.603,123.06,130.212,(...),116.879,114.402,117.773,119.173,117.546,117.341,122.487,133.949,143.605,145.584,137.652,125.728).
min = 85.2638, max = 186.79, mean = 127.961, std = 11.9581, coords_min = (0,31,0,0), coords_max = (31,0,0,0).

Official platform support

You can build your own Gmic python binding on possibly any platform with a C/C++ compiler.
Here is what we have managed to build and ship to Gmic PyPI page [https://pypi.org/project/gmic/], allowing you to pip install gmic and use pre-built binaries or build gmic-py on the fly.
Note that gmic-py’s package installer links to your machine’s existing libpng, OpenMP and libcURL if found.

Build target	Basic gmic-py0	ppm/bmp I/O	libpng I/O	OpenMP	libcURL	OpenCV
———–	————————-	———–	———-	——-	——-	——–
Build from source1	✓	✓	✓ 2	✓	✓ 2	✓ 2
Github CI Ubuntu Linux 32&64bit 1	✓	✓	✓ 2	✓	✓ 2	✓ 2
Pre-compiled Linux i686 & x86_64 py3.5-3.8 (gcc)m	✓	✓	✓	✓	✓ 3	✗
Pre-compiled MacOS 64 py3.5-3.8 (clang)	✓	✓	✓	✓	✓	✗
Windows (planned)w	✗	✗	✗	✗	✗	✗

0 ie. gmic.GmicImage(bytes, w, h, d, s), gmic.run(..., "commands")

1 ie. from this project’s tarball or using pip install gmic with the (possibly default) “from source” option. Hack the setup.py if needed, should work well with just libz installed, preferably with libfftw3 too to support all sizes of images. Compiling with gcc or clang should work well.

2 enabled if related library is found at compile time, using found pkg-config executable.

3 useful for samples retrieval and getting the latest filters collection updated; libcurl is embedded in the wheel package. If failing, any runtime-findable curl executable will be used, see this issue [https://github.com/myselfhimself/gmic-py/issues/9]; at anytime, use the network 0 G’MIC command to disable internet access

m those are actually manylinux2010 and manylinux2014 targets. Manylinux1 has been dropped

w Until it is ready, you can try building you own gmic-py builds on Windows using MSYS2 [https://www.msys2.org/]

Examples

Using your camera with G’MIC’s optional OpenCV linking

If your machine has libopencv installed and your gmic-py was compiled from source (ie. python setup.py build), it will be dynamically linked.

Example script

[image: _images/gmic-py-opencv-camera.gif]Live example

Roadmap

Q4 2019

	Create a pip install -e GITHUB_URL installable Python package for GMIC, with an API very similar to the C++ library: gmic_instance.run(...), gmic(...) and matching exception types. Binary dependencies should be bundled as in this tutorial [https://python-packaging-tutorial.readthedocs.io/en/latest/binaries_dependencies.html].

	Through Ctypes dynamic binding on an Ubuntu docker image using Python 2-3. DONE in ctypes_archive branch [https://github.com/dtschump/gmic-py/tree/ctypes_archive].

	Through custom Python/C++ binding (see gmicpy.cpp and setup.py) DONE

	Create documented examples for various application domains. WIP

Q1-Q3 2020

	Move the package to official Python package repositories. DONE

	Add numpy nparray I/O support with automatic values (de-)interlacing

	Add Windows support

Q2-Q3 2020

	In a separate repository, create a Blender Plugin, leveraging the Python library and exposing:

	a single Blender GMIC 2D node with a text field or linkable script to add a GMIC expression

	as many 2D nodes as there are types of GMIC filters and commands (500+)

 Those three scripts leveraging gmic-py >= 2.9.0, numpy, Pillow and matplotlib showcase the numpy support of gmic-py.
Note that numpy/PIL/Pillow image dimensions (height, width) are naturally flipped with G’MIC’s image dimensions (width, height),
because of numpy’s algebraic notation tradition.
Note also that G’MIC’s GmicImage type encodes images in float32/pixel (or voxel) channel value in a deinterleaved style eg. line1-RRRRGGGGBBBB-line2-RRR…
A video demo of the numpy support at early stages can be found in our Libre Graphics Meeting 2020 presentation on Youtube here [https://www.youtube.com/watch?v=qbJv7QScs3s].

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/gmic-py-opencv-camera.gif
ython 3.6.9 (default, Nov 7 2019, 10
GCC 8.3.0] on linux

ype "help”, "copyright, "credits" or "license" for mor
> ipport gnic

:02)

_images/logo4.jpg
sGMIC &

GREYC‘s Magic for Image Computing

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/910f9c0d6265087f631cd6006d3a2c8d501f46a2.png
& python’

_static/up-pressed.png

_static/up.png

